Skip to main content
Log in

Fine mapping, phenotypic characterization and validation of non-race-specific resistance to powdery mildew in a wheat–Triticum militinae introgression line

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Introgression of several genomic loci from tetraploid Triticum militinae into bread wheat cv. Tähti has increased resistance of introgression line 8.1 to powdery mildew in seedlings and adult plants. In our previous work, only a major quantitative trait locus (QTL) on chromosome 4AL of the line 8.1 contributed significantly to resistance, whereas QTL on chromosomes 1A, 1B, 2A, 5A and 5B were detected merely on a suggestive level. To verify and characterize all QTLs in the line 8.1, a mapping population of double haploid lines was established. Testing for seedling resistance to 16 different races/mixtures of Blumeria graminis f. sp. tritici revealed four highly significant non-race-specific resistance QTL including the main QTL on chromosome 4AL, and a race-specific QTL on chromosome 5B. The major QTL on chromosome 4AL (QPm.tut-4A) as well as QTL on chromosome 5AL and a newly detected QTL on 7AL were highly effective at the adult stage. The QPm.tut-4A QTL accounts on average for 33–49 % of the variation in resistance in the double haploid population. Interactions between the main QTL QPm.tut-4A and the minor QTL were evaluated and discussed. A population of 98 F2 plants from a cross of susceptible cv. Chinese Spring and the line 8.1 was created that allowed mapping the QPm.tut-4A locus to the proximal 2.5-cM region of the introgressed segment on chromosome 4AL. The results obtained in this work make it feasible to use QPm.tut-4A in resistance breeding and provide a solid basis for positional cloning of the major QTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asíns MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  • Badaeva ED, Budashkina EB, Bilinskaya EN, Pukhalskiy VA (2010) Intergenomic chromosome substitutions in wheat interspecific hybrids and their use in the development of genetic nomenclature of Triticum timopheevii chromosomes. Russ J Genet 46:869–886

    Article  CAS  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors and R-genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  PubMed  CAS  Google Scholar 

  • Bougot Y, Lemoine J, Pavoine MT, Guyomar’ch H, Gautier V, Muranty H, Barloy D (2006) A major QTL effect controlling resistance to powdery mildew in winter wheat at the adult plant stage. Plant Breed 125:550–556

    Article  CAS  Google Scholar 

  • Bryan GJ, Collins AJ, Stephenson P, Orry A, Smith JB, Gale MD (1997) Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet 94:557–563

    Article  CAS  Google Scholar 

  • Canady MA, Ji Y, Chetelat RT (2006) Homeologous recombination in Solanum lycopersicoides introgression lines of cultivated tomato. Genetics 174(4):1775–1788

    Article  PubMed  CAS  Google Scholar 

  • Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin JM, Doussinault G (2001) A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theor Appl Genet 103:962–971

    Article  CAS  Google Scholar 

  • Chen XM, Luo YH, Xia XC, Xia LQ, Chen X, Ren ZL, He ZH, Jia JZ (2005) Chromosomal location of powdery mildew gene Pm16 in wheat using SSR marker analysis. Plant Breed 124:225–228

    Article  CAS  Google Scholar 

  • Chmielewicz KM, Manly KF (2002) User manual for QTX. Roswell Park Cancer Institute, Buffalo

  • Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Dubcovsky J, Dvořák J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288

    Article  CAS  Google Scholar 

  • Dobrovolskaya OB, Sourdille P, Bernard M, Salina EA (2009) Chromosome synteny of the A genome of two evolutionary wheat lines. Russ J Genet 45:1368–1375

    Article  CAS  Google Scholar 

  • Dorofeyev VF, Jakubtsiner MM, Rudenko MI, Migushova EF, Udachin RA, Merezhko AF, Semenova LV, Novikova MV, Gradchaninova OD, Shitova IP (1976) The wheats of the world. Brezhnev DD, Dorofeyev VF (eds) Kolos Publ., Leningrad, 487 pp (in Russian)

  • Dvořák J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644

    Article  PubMed  Google Scholar 

  • Dvořák J, di Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31

    Article  PubMed  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32

    Article  PubMed  CAS  Google Scholar 

  • Gordeeva EI, Leonova IN, Kalinina NP, Salina EA, Budashkina EB (2009) Comparative cytological and molecular analysis of common wheat introgression lines containing genetic material of T. timopheevii Zhuk. Russ J Genet 45:1428–1437

    Article  CAS  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    Article  PubMed  CAS  Google Scholar 

  • Gustafson GD, Shaner G (1982) Influence of plant age on the expression of slow-mildewing resistance in wheat. Phytopathology 72:746–749

    Article  Google Scholar 

  • Hossain KG, Kalavacharla V, Lazo GR, Hegstad J, Wentz MJ, Kianian PMA, Simons K, Gehlhar S, Rust JL, Syamala RR, Obeori K, Bhamidimarri S, Karunadharma P, Chao S, Anderson OD, Qi LL, Echalier B, Gill BS, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Akhunov ED, Dvořák J, Miftahudin, Ross K, Gustafson JP, Radhawa HS, Dilbirligi M, Gill KS, Peng JH, Lapitan NLV, Greene RA, Bermudez-Kandianis CE, Sorrells ME, Feril O, Pathan MS, Nguyen HT, Gonzalez-Hernandez JL, Conley EJ, Anderson JA, Choi DW, Fenton D, Close TJ, McGuire PE, Qualset CO, Kianian SF (2004) A chromosome bin map of 2148 expressed sequence tag loci of wheat homoeologous group 7. Genetics 168:687–699

    Article  PubMed  CAS  Google Scholar 

  • Hsam SLK, Zeller FJ (1997) Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar Amigo. Plant Breed 116:119–122

    Article  Google Scholar 

  • Hsam SLK, Zeller FJ (2002) Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.). In: Bélanger RR, Bushnell WR, Dick AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. American Phytopathological Society Press, St. Paul, pp 219–238

  • Huang XQ, Röder MS (2004) Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica 137:203–223

    Article  CAS  Google Scholar 

  • Huang X, Zeller FJ, Hsam SLK, Wenzel G, Mohler V (2000) Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome 43:298–305

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa G, Nakamura T, Ashida T, Saito M, Nsuda S, Endo TR (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514

    Article  PubMed  CAS  Google Scholar 

  • Jakobson I, Peusha H, Timofejeva L, Järve K (2006) Adult plant and seedling resistance to powdery mildew in a Triticum aestivum × Triticum militinae hybrid line. Theor Appl Genet 112:760–769

    Article  PubMed  Google Scholar 

  • Järve K, Peusha HO, Tsymbalova J, Tamm S, Devos KM, Enno TM (2000) Chromosomal location of a T. timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome 43:377–381

    PubMed  Google Scholar 

  • Jiang J, Gill BS (1994a) Different species-specific chromosome translocation in Triticum timopheevii and T. turgidum support diphyletic origin of polyploid wheats. Chromosome Res 2:59–64

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Gill BS (1994b) New 18S-26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma 103:179-185. Chromosoma 103:179–185

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen JH, Jensen CJ (1973) Gene Pm6 for resistance to powdery mildew. Euphytica 22:423

    Article  Google Scholar 

  • Keller M, Keller B, Schachermayr G, Winzeler M, Schmid JE, Stamp P, Messmer MM (1999) Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population. Theor Appl Genet 98:903–912

    Article  CAS  Google Scholar 

  • Khlestkina EK, Kumar U, Röder MS (2010) Ent-kaurenoic acid oxidase genes in wheat. Mol Breed 25:251–258

    Article  CAS  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 232:1360–1363

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Wicker T, Risk JM, Ashton AR, Selter LL, Matsumoto T, Keller B (2011) Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species. Plant J 65:392–403

    Article  PubMed  CAS  Google Scholar 

  • Kubaláková M, Valárik M, Barto J, Vrána J, Cíhalíková J, Molnár-Láng M, Dolezel J (2003) Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46(5):893–905

    Article  PubMed  Google Scholar 

  • Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30

    Article  PubMed  CAS  Google Scholar 

  • Lan CX, Liang SS, Wang ZL, Yan J, Zhang Y, Xia XC, He ZH (2009) Quantitative trait loci mapping for adult-plant resistance to powdery mildew in Chinese wheat cultivar Bainong 64. Phytopathology 99:1121–1126

    Article  PubMed  Google Scholar 

  • Lan CX, Ni X, Yan J, Zhang Y, Xia XC, Chen X, He ZH (2010) Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Mol Breed 25:615–622

    Article  CAS  Google Scholar 

  • Large EC (1954) Growth stages in cereals. Illustrations of the Feeke’s scale. Plant Pathol 3:129

    Google Scholar 

  • Lillemo M, Skinnes H, Brown JKM (2010) Race specific resistance to powdery mildew in Scandinavian wheat cultivars, breeding lines and introduced genotypes with partial resistance. Plant Breed 129:297–303

    Article  CAS  Google Scholar 

  • Lutz J, Limpert E, Bartoa P, Zeller FJ (1992) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.) I. Czechoslovakian cultivars. Plant Breed 108:33–39

    Article  Google Scholar 

  • Maestra B, Naranjo T (1999) Structural chromosome differentiation between Triticum timopheevii and T. turgidum and T. aestivum. Theor Appl Genet 98:744–750

    Article  CAS  Google Scholar 

  • Maxwell JJ, Lyerly JH, Cowger C, Marshall D, Brown-Guedira G, Murphy JP (2009) MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL. Theor Appl Genet 119:1489–1495

    Article  PubMed  CAS  Google Scholar 

  • Meer JM, Manly KF, Cudmore RH (2002) Software for genetic mapping of Mendelian markers and quantitative trait loci. Roswell Park Cancer Institute, Buffalo

  • Mingeot D, Chantret N, Baret PV, Dekeyser A, Boukhatem N, Sourdille P, Doussinoult G, Jacquemin JM (2002) Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic background. Plant Breed 121:133–140

    Article  CAS  Google Scholar 

  • Muranty H, Pavoine M-T, Jaudeau B, Radek W, Doussinault G, Barloy D (2009) Two stable QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 are expressed at different times along the growing season. Mol Breed 23:445–461

    Article  CAS  Google Scholar 

  • Naranjo T, Roca A, Goicoechea PG, Giraldez R (1987) Arm homeology of wheat and rye chromosomes. Genome 29:873–882

    Article  Google Scholar 

  • Perugini LD, Murphy JP, Marshall D, Brown-Guedira G (2008) Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet 116:417–425

    Article  PubMed  CAS  Google Scholar 

  • Peusha H, Enno T, Jakobson I, Tsõmbalova J, Ingver A, Järve K (2008) Powdery mildew resistance of Nordic spring wheat cultivars grown in Estonia. Acta Agric Scand Sect B Plant Soil Sci 54:289–296

    Google Scholar 

  • Robe P, Pavoine MT, Doussinault G (1996) Early assessment of adult plant reaction of wheat (Triticum aestivum L) to powdery mildew (Erysiphe graminis f sp tritici) at the five-leaf stage. Agronomie 16:441–451

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plasche J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rodriguez S, Perera E, Maestra B, Díez M, Naranjo T (2000) Chromosome structure of Triticum timopheevii relative to T. turgidum. Genome 43:923–930

    PubMed  CAS  Google Scholar 

  • Salina EA, Leonova IN, Efremova TT, Röder MS (2006) Wheat genome structure: translocations during the course of polyploidization. Funct Integr Genomics 6:71–80

    Article  PubMed  CAS  Google Scholar 

  • Šimková H, Svensson JT, Condamine P, Hribová E, Suchánková P, Bhat PR, Bartos J, Safár J, Close TJ, Dolezel J (2008) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294

    Article  PubMed  Google Scholar 

  • Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735

    Article  PubMed  CAS  Google Scholar 

  • Srnić G, Murphy JP, Lyerly JH, Leath S, Marshall DS (2005) Inheritance and chromosomal assignment of powdery mildew resistance genes in two winter wheat germplasm lines. Crop Sci 45:1578

    Article  Google Scholar 

  • Tommasini L, Yahiaoui N, Srichumpa P, Keller B (2006) Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet 114:165–175

    Article  PubMed  CAS  Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sex Plant Reprod 9:209–215

    Article  Google Scholar 

  • Tucker DM, Griffey CA, Liu S, Maroof MAS (2006) Potential for effective marker-assisted selection of three quantitative trait loci conferring adult plant resistance to powdery mildew in elite wheat breeding populations. Plant Breed 125:430–436

    Article  CAS  Google Scholar 

  • Tucker DM, Griffey CA, Liu S, Brown-Guedira G, Marshall DS, Saghai Maroof MA (2007) Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations. Euphytica 155:1–13

    Article  Google Scholar 

  • Vrána J, Kubaláková M, Šimková H, Cíhalíková J, Lysák MA, Dolezel J (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156(4):2033–2041

    PubMed  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  PubMed  CAS  Google Scholar 

  • Yu DZ, Yang XJ, Yang LJ, Jeger MJ, Brown JKM (2001) Assessment of partial resistance to powdery mildew in Chinese wheat varieties. Plant Breed 120:279–284

    Article  Google Scholar 

Download references

Acknowledgments

We thank Anne Ingver from the Jõgeva Plant Breeding Institute for the assistance in conducting field tests. This study was supported by the European Commission through European Regional Fund (Estonian Centre of Excellence in Environmental Adaptation), Estonian Ministry of Agriculture, the Ministry of Education, Youth and Sports of the Czech Republic and the European Regional Development Fund (Operational Programme Research and Development for Innovations No. ED0007/01/01), and by Czech Science Foundation (Award No. 521/08/1629).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Jakobson.

Additional information

Communicated by J. Dubcovsky.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakobson, I., Reis, D., Tiidema, A. et al. Fine mapping, phenotypic characterization and validation of non-race-specific resistance to powdery mildew in a wheat–Triticum militinae introgression line. Theor Appl Genet 125, 609–623 (2012). https://doi.org/10.1007/s00122-012-1856-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1856-0

Keywords

Navigation