Skip to main content
Log in

Molecular characterisation and interpretation of genetic diversity within globally distributed germplasm collections of tall fescue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis Huds.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Allohexaploid tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum [Schreb.] Darbysh.) is an agriculturally important grass cultivated for pasture and turf world-wide. Genetic improvement of tall fescue could benefit from the use of non-domesticated germplasm to diversify breeding populations through the incorporation of novel and superior allele content. However, such potential germplasm must first be characterised, as three major morphotypes (Continental, Mediterranean and rhizomatous) with varying degrees of hybrid interfertility are commonly described within this species. As hexaploid tall fescue is also a member of a polyploid species complex that contains tetraploid, octoploid and decaploid taxa, it is also possible that germplasm collections may have inadvertently sampled some of these sub-species. In this study, 1,040 accessions from the publicly available United States Department of Agriculture tall fescue and meadow fescue germplasm collections were investigated. Sequence of the chloroplast genome-located matK gene and the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) permitted attribution of accessions to the three previously known morphotypes and also revealed the presence of tall fescue sub-species of varying ploidy levels, as well as other closely related species. The majority of accessions were, however, identified as Continental hexaploid tall fescue. Analysis using 34 simple sequence repeat markers was able to further investigate the level of genetic diversity within each hexaploid tall fescue morphotype group. At least two genetically distinct sub-groups of Continental hexaploid tall fescue were identified which are probably associated with palaeogeographic range expansion of this morphotype. This work has comprehensively characterised a large and complex germplasm collection and has identified genetically diverse accessions which may potentially contribute valuable alleles at agronomic loci for tall fescue cultivar improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M et al (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275

    Article  PubMed  Google Scholar 

  • Barkley N, Krueger R, Federici C, Roose M (2009) What phylogeny and gene genealogy analyses reveal about homoplasy in citrus microsatellite alleles. Plant Syst Evol 282:71–86

    Article  CAS  Google Scholar 

  • Blair M, Díaz L, Buendía H, Duque M (2009) Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet 119:955–972

    Article  PubMed  CAS  Google Scholar 

  • Borrill M, Tyler BF, Lloyd-Jones M (1971) Studies in Festuca 1. A chromosome atlas of Bovinae and Scariosae. Cytologia 36:1–14

    Article  Google Scholar 

  • Borrill M, Tyler BF, Morgan WG (1976) Studies in Festuca 7. Chromosome atlas (Part 2). An appraisal of chromosome race distribution and ecology, including F. pratensis var. apennina (De Not.) Hack—tetraploid. Cytologia 41:219–236

    Google Scholar 

  • Buckner RC, Burrus PB, Bush LP (1977) Registration of Kenhy tall fescue. Crop Sci 17:672–673

    Article  Google Scholar 

  • Buckner RC, Powell JB, Frakes RV (1979) Historical development. In: Bush LP, Buckner RC (eds) Tall fescue Agronomy Monograph. ASA, CSSA, SSSA, Madison, pp 1–8

    Google Scholar 

  • Burner DM, Balasko JA, O’Brien PM (1988) Attributes of tall fescue germplasm of diverse geographic origin. Crop Sci 28:459–462

    Article  Google Scholar 

  • Charmet G, Ravel C, Balfourier F (1997) Phylogenetic analysis in the Festuca-Lolium complex using molecular markers and ITS rDNA. Theor Appl Genet 94:1038

    Article  CAS  Google Scholar 

  • Charrier S, Stewart AV (2006) Breeding of rhizomatous turf tall fescue. 13th Australasian Plant Breeding Conference. Christchurch, New Zealand, pp 383–387

    Google Scholar 

  • Clayton W, Renvoize S (1986) Genera graminum. Kew Publishing, London

    Google Scholar 

  • Clement SL, Elberson LR, Youssef NN, Davitt CM, Doss RP (2001) Incidence and diversity of Neotyphodium fungal endophytes in tall fescue from Morocco, Tunisia, and Sardinia. Crop Sci 41:570–576

    Article  Google Scholar 

  • Darbyshire S (1993) Realignment of Festuca subgenus Schedonorus with the genus Lolium (Poaceae). Novon 3:239–243

    Article  Google Scholar 

  • Dijkstra J, Vos ALF (1975a) Meiotic doubling of chromosome number in Festulolium. Euphytica 24:743–749

    Article  Google Scholar 

  • Dijkstra J, Vos ALF (1975b) Seedling growth of allopolyploids from Lolium multiflorum L. x Festuca arundinacea L. Euphytica 24:181–189

    Article  Google Scholar 

  • Dracatos P, Cogan N, Dobrowolski M, Sawbridge T, Spangenberg G, Smith K, Forster J (2008) Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 117:203–219

    Article  PubMed  CAS  Google Scholar 

  • Dracatos P, Cogan N, Sawbridge T, Gendall A, Smith K, Spangenberg G, Forster J (2009) Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass (Lolium perenne L.). BMC Plant Biol 9:62

    Article  PubMed  Google Scholar 

  • Estoup A, Jarne P, Cornuet J-M (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Fjellheim S, Rognli OA, Kjetil F, Brochmann C (2006) Phylogeographical history of the widespread meadow fescue (Festuca pratensis Huds.) inferred from chloroplast DNA sequences. J Biogeogr 33:1470–1478

    Article  Google Scholar 

  • George J, Dobrowolski MP, Zijll Van, de Jong E, Cogan NOI, Smith KF, Forster JW (2006) Assessment of genetic diversity in cultivars of white clover (Trifolium repens L.) detected by SSR polymorphisms. Genome 49:919–930

    Article  PubMed  CAS  Google Scholar 

  • Hand ML, Cogan NOI, Stewart AV, Forster JW (2010) Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex. BMC Evol Biol 10:303

    Article  PubMed  Google Scholar 

  • Harris CA, Clark SG, Reed KFM, Nie ZN, Smith KF (2008) Novel Festuca arundinacea Shreb. and Dactylis glomerata L. germplasm to improve adaptation for marginal environments. Aust J Exp Agric 48:436–448

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl 127:15–19

    Google Scholar 

  • Humphreys MW, Thomas HM, Morgan WG, Meredith MR, Harper JA, Thomas H, Zwierzykowski Z, Ghesquiere M (1995) Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridization. Heredity 75:171–174

    Article  Google Scholar 

  • Hunt KL, Sleper DA (1981) Fertility of hybrids between two geographic races of tall fescue. Crop Sci 21:400–404

    Article  Google Scholar 

  • Inda LA, Segarra-Moragues JG, Müller J, Peterson PM, Catalán P (2008) Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Mol Phylogenet Evol 46:932–957

    Article  PubMed  CAS  Google Scholar 

  • Jadas-Hecart J, Gillet M (1973) Problems posed by sterile hybrids between two types of tall fescues European and Mediterranean. Meeting of the Fodder Crops Section of Eucarpia, Wageningen

    Google Scholar 

  • Jernstedt JA, Bouton JH (1985) Anatomy, morphology, and growth of tall fescue rhizomes. Crop Sci 25:539–542

    Article  Google Scholar 

  • Jones ES, Dupal MP, Kölliker R, Drayton MC, Forster JW (2001) Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405–415

    Article  CAS  Google Scholar 

  • Kopecký D, Lukaszewski AJ, Doležel J (2005) Genomic constitution of Festulolium cultivars released in the Czech Republic. Plant Breed 124:454–458

    Article  Google Scholar 

  • Kopecký D, Loureiro J, Zwierzykowski Z, Ghesquière M, Doležel J (2006) Genome constitution and evolution in Lolium×Festuca hybrid cultivars (Festulolium). Theor Appl Genet 113:731–742

    Article  PubMed  Google Scholar 

  • Kopecký D, Bartoš J, Lukaszewski AJ, Baird JH, Černoch V, Kölliker R, Rognli OA, Blois H, Caig V, Lübberstedt T, Studer B, Shaw P, Doležel J, Kilian A (2009) Development and mapping of DArT markers within the Festuca-Lolium complex. BMC Genomics 10:473

    Article  PubMed  Google Scholar 

  • Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol 14:415–424

    Article  PubMed  CAS  Google Scholar 

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992

    Article  PubMed  CAS  Google Scholar 

  • Lewis EJ (1963) Hybrids between geographical races of Festuca arundinacea Schreb. Reports of the Welsh Plant Breeding Station, pp 26–27

  • Lewis EJ, Tyler BF, Chorlton KH (1973) Development of Lolium-Festuca hybrids. Annual Report of the Welsh Plant Breeding Station for 1972, pp 34–37

  • Majidi M, Mirlohi A (2010) Genetic similarities among Iranian populations of Festuca, Lolium, Bromus and Agropyron using amplified fragment length polymorphism (AFLP) markers. Iran J Biotechnol 8:16–23

    CAS  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Pasakinskiene I, Anamthawat-Jonsson K, Humphreys MW, Paplauskiene V, Jones RN (1998) New molecular evidence on genome relationships and chromosome identification in fescue (Festuca) and ryegrass (Lolium). Heredity 81:659–665

    Article  CAS  Google Scholar 

  • Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann J (eds) Genetic diversity of cultivated tropical plants. Enfield Science Publishers, Montpellier, pp 43–76

    Google Scholar 

  • Piano E, Bertoli FB, Romani M, Tava A, Riccioni L, Valvassori M, Carroni AM, Pecetti L (2005) Specificity of host-endophyte association in tall fescue populations from Sardinia, Italy. Crop Sci 45:1456–1463

    Article  Google Scholar 

  • Ponting RC, Drayton MC, Cogan NOI, Dobrowolski MP, Spangenberg GC, Smith KF, Forster JW (2007) SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.). Mol Genet Genomics 278:585–597

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Reed KFM, Clement SL, Feely WF, Clark B (2004) Improving tall fescue (Festuca arundinacea) for cool-season vigour. Aust J Exp Agric 44:873–881

    Article  Google Scholar 

  • Robson M (1967) A comparison of British and North African varieties of tall fescue. 1. Leaf growth during winter; effects of temperature and day length. J Appl Ecol 4:475–484

    Article  Google Scholar 

  • Rognli OA, Saha MC, Bhamidimarri S, van der Hejden S (2010) Fescues. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses, handbook of plant breeding 5. Springer, New York, pp 261–292

    Chapter  Google Scholar 

  • Saha M, Mian M, Eujayl I, Zwonitzer J, Wang L, May G (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Saha M, Cooper J, Mian M, Chekhovskiy K, May G (2006) Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theor Appl Genet 113:1449–1458

    Article  PubMed  CAS  Google Scholar 

  • Schardl CL, Craven KD, Schweri KK, Hollin W, Clement SL, Schmid J, West CP, Phillips TD (2007) Endophytes of the tall fescue ploidy series in Europe, North Africa and the Mediterranean. In: Popay AJ, Thom ER (eds) 6th International Symposium on Fungal Endophytes of Grasses. Dunedin, p 456

  • Schneider J, Doring E, Hilu KW, Roser M (2009) Phylogenetic structure of the grass subfamily Pooideae based on comparison of plastid matK gene-3′trnK exon and nuclear ITS sequences. Taxon 58:405–424

    Google Scholar 

  • Sharifi Tehrani M, Mardi M, Sahebi J, Catalán P, Díaz-Pérez A (2009) Genetic diversity and structure among Iranian tall fescue populations based on genomic-SSR and EST-SSR marker analysis. Plant Syst Evol 282:57–70

    Article  CAS  Google Scholar 

  • Stewart AV (1995) World first—tall fescue with rhizomes. N Z Turf Manag J 9:32

    Google Scholar 

  • Stewart AV (1997) The development of a rhizomatous tall fescue (Festuca arundinacea) cultivar. 8th International Turfgrass Research Conference, Sydney, Australia, pp 136–138

  • Symonds VV, Lloyd AM (2003) An analysis of microsatellite loci in Arabidopsis thaliana: Mutational dynamics and application. Genetics 165:1475–1488

    PubMed  CAS  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Thompson FN, Stuedemann JA, Hill NS (2001) Anti-quality factors associated with alkaloids in eastern temperate pasture. J Range Manag 54:474–489

    Article  Google Scholar 

  • Tsai HF, Liu JS, Staben C, Christensen MJ, Latch GC, Siegel MR, Schardl CL (1994) Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloe species. Proc Natl Acad Sci USA 91:2542–2546

    Article  PubMed  CAS  Google Scholar 

  • Vigouroux Y, Jaqueth JS, Matsuoka Y, Smith OS, Beavis WD, Smith JSC, Doebley J (2002) Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol 19:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Dobrowolski MP, Cogan NOI, Forster JW, Smith KF (2009) Assignment of individual genotypes to specific forage cultivars of perennial ryegrass based on SSR markers. Crop Sci 49:49–58

    Article  Google Scholar 

  • Wit F (1959) Hybrids of ryegrasses and meadow fescue and their value for grass breeding. Euphytica 8:1–12

    Google Scholar 

  • Xie H, Sui Y, Chang F-Q, Xu Y, Ma R-C (2006) SSR allelic variation in almond (Prunus dulcis Mill.). Theor Appl Genet 112:366–372

    Article  PubMed  CAS  Google Scholar 

  • Xu WW, Sleper DA (1994) Phylogeny of tall fescue and related species using RFLPs. Theor Appl Genet 88:685–690

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Piyumi Ekanayake and Bianca Brun for technical assistance in the laboratory and Dr. Junping Wang for assistance in the glasshouse and with plant maintenance. Melanie Hand was the recipient of an Australian Postgraduate Award. The research reported here was funded by the Victorian Department of Primary Industries and the Dairy Futures Cooperative Research Centre. The authors thank Prof. German Spangenberg for careful critical reading of the manuscript and anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Forster.

Additional information

Communicated by P. Langridge.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hand, M.L., Cogan, N.O.I. & Forster, J.W. Molecular characterisation and interpretation of genetic diversity within globally distributed germplasm collections of tall fescue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis Huds.). Theor Appl Genet 124, 1127–1137 (2012). https://doi.org/10.1007/s00122-011-1774-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1774-6

Keywords

Navigation