Skip to main content
Log in

Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Cultivated common bean germplasm is especially diverse due to the parallel domestication of two genepools in the Mesoamerican and Andean centers of diversity and introgression between these gene pools. Classification into morphological races has helped to provide a framework for utilization of this cultivated germplasm. Meanwhile, core collections along with molecular markers are useful tools for organizing and analyzing representative sets of these genotypes. In this study, we evaluated 604 accessions from the CIAT core germplasm collection representing wide genetic variability from both primary and secondary centers of diversity with a newly developed, fluorescent microsatellite marker set of 36 genomic and gene-based SSRs to determine molecular diversity and with seed protein analysis to determine phaseolin alleles. The entire collection could be divided into two genepools and five predominant races with the division between the Mesoamerica race and the Durango–Jalisco group showing strong support within the Mesoamerican genepool and the Nueva Granada and Peru races showing less diversity overall and some between-group admixture within the Andean genepool. The Chile race could not be distinguished within the Andean genepool but there was support for the Guatemala race within the Mesoamerican genepool and this race was unique in its high level of diversity and distance from other Mesoamerican races. Based on this population structure, significant associations were found between SSR loci and seed size characteristics, some on the same linkage group as the phaseolin locus, which previously had been associated with seed size, or in other regions of the genome. In conclusion, this study has shown that common bean has very significant population structure that can help guide the construction of genetic crosses that maximize diversity as well as serving as a basis for additional association studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta-Gallegos JA, Kelly JD, Gepts P (2007) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47:44–59

    Article  Google Scholar 

  • Afanador L, Hadley S, Kelly JD (1993) Adoption of a mini-prep DNA extraction method for RAPD marker analysis in common bean (Phaseolus vulgaris L.). Bean Improv Coop 36:10–11

    Google Scholar 

  • Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphism of simple sequence repeat DNA in soybean. Genetics 132:1131–1139

    PubMed  CAS  Google Scholar 

  • Ariza-Nieto M, Blair MW, Welch RM, Glahn RP (2007) Screening of bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J Agr Food Sci 55:7950–7956

    Article  CAS  Google Scholar 

  • Becerra-Velazquez L, Gepts P (1994) RFLP diversity of common bean (Phaseolus vulgaris L.) in its centres of origin. Genome 37:256–263

    Article  Google Scholar 

  • Beebe S, Lynch J, Galwey N, Tohme J, Ochoa I (1997) A geographical approach to identify phosphorus-efficient genotypes among landraces and wild ancestors of common bean. Euphytica 95:325–336

    Article  Google Scholar 

  • Beebe S, Skroch P, Tohme J, Duque MC, Pedraza F, Nienhhuis J (2000) Structure of genetic diversity among common bean landraces of middle American origin based on correspondence analysis of RAPD. Crop Sci 40:264–273

    Google Scholar 

  • Beebe S, Renjifo J, Gaitán-Solís E, Duque MC, Tohme J (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862

    Google Scholar 

  • Blair MW, Hedetale V, McCouch SR (2002) Fluorescent-labeled microsatellite panels useful for detecting allelic diversity in cultivated rice (Oryza sativa L.). Theor Appl Genet 105:449–457

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Pedraza F, Buendia H, Gaitán-Solis E, Beebe S, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe S (2006a) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006b) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Diaz JM, Hidalgo R, Diaz LM, Duque MC (2007) Microsatellite characterization of Andean races of common bean (Phaseolus vulgaris L.). Theor Appl Genet 116:29–43

    Article  PubMed  CAS  Google Scholar 

  • Broughton WJ, Hernandez G, Blair MW, Beebe SE, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Google Scholar 

  • Brown JWS, Ma Y, Bliss FA, Hall TC (1981) Genetic variation in the subunits of Globulin-1 storage protein of French bean. Theor Appl Genet 59:83–88

    CAS  Google Scholar 

  • Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111

    Article  PubMed  CAS  Google Scholar 

  • Buckler E, Bradbury P, Kroon D, Ramdoss Y, Casstevens T, Zhang Z (2007) TASSEL v. 2 (Trait analysis by association, evolution and linkage). http://www.maizegenetics.net/tassel

  • Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  • Coburn JR, Temnykh SV, Paul EM, McCouch SR (2002) Design and application of microsatellite marker panels for semiautomated genotyping of rice (Oryza sativa L.). Crop Sci 42:2092–2099

    CAS  Google Scholar 

  • Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Morten L, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed  CAS  Google Scholar 

  • Díaz LM, Blair MW (2006) Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers. Theor Appl Genet 114:143–154

    Article  PubMed  Google Scholar 

  • Diwan N, Cregan PB (1997) Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor Appl Genet 95:723–733

    Article  CAS  Google Scholar 

  • Durán LA, Blair MW, Giraldo MC, Machiavelli R, Prophete E, Nin JC, Beaver JS (2005) Morphological and molecular characterization of common bean (Phaseolus vulgaris L.) landraces from the Caribbean. Crop Sci 45:1320–1328

    Article  Google Scholar 

  • Excoffier L (2007) Arlequin ver 3.11 Computational and molecular population genetics lab CMPG. Zoological Institute, University of Berne. http://cmpg.unibe.ch/software/arlequin3/

  • Felsenstein J (1993) PHYLIP—phylogeny inference package, Version 3.67. Department of Genome Sciences and Department of Biology, University of Washington, Seattle, WA, USA. http://cmgm.stanford.edu/phylip/

  • Flint-Garcia SA, Thuille A-C, Yu J, Pressoir G, Romero SM, Mitchel SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    Article  PubMed  CAS  Google Scholar 

  • Gaitán E, Duque MC, Edwards K, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris L.): isolation, characterization, and cross-species amplification in Phaseolus spp. Crop Sci 42:2128–2136

    Article  Google Scholar 

  • Gao H, Williamson S, Bustamante CD (2007) An MCMC approach for joint inference of population structure and inbreeding rates from multi-locus genotype data. Genetics (online). Cornell Computational Biology Service Unit (CBSU). http://cbsuapps.tc.cornell.edu/InStruct.aspx

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    Article  PubMed  CAS  Google Scholar 

  • Gepts P, Osborn T, Rashka K, Bliss F (1986) Phaseolin–protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris L.): evidence for multiple centers of domestication. Econ Bot 40:451–468

    CAS  Google Scholar 

  • Gomez O, Blair MW, Frankow-Lindberg B, Gullberg U (2004) Molecular and phenotypic diversity of common bean landraces from Nicaragua. Crop Sci 4:1412–1418

    Article  Google Scholar 

  • Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2008) Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breeding 21:271–281

    Article  CAS  Google Scholar 

  • Idury RM, Cardon LR (1997) A simple method for automated allele binning in microsatellite markers. Genome Res 11:1104–1109

    Google Scholar 

  • Islam FM, Basford KE, Redden RJ, Gonzalez AV, Kroonenberg PM, Beebe SE (2002) Genetic variability in cultivated common bean beyond the two major gene pools. Genet Resour Crop Evol 49:271–283

    Article  Google Scholar 

  • Islam FM, Beebe S, Muñoz M, Tohme J, Redden RJ, Basford KE (2004) Using molecular markers to assess the effect of introgression on quantitative attributes of common bean in the Andean gene pool. Theor Appl Genet 108:243–252

    Article  PubMed  CAS  Google Scholar 

  • Johns MA, Skroch PW, Nienhuis J, Hinrichsen P, Bascur G, Muñoz-Schick C (1997) Gene pool classification of common bean landraces from Chile based on RAPD and morphological data. Crop Sci 37:605–613

    Article  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common-bean. Crop Sci 36:1037–1145

    Article  Google Scholar 

  • Lioi L, Piergiovanni AR, Pignone D, Puglisi S, Santantonio M, Sonnante G (2005) Genetic diversity of some surviving on-farm Italian common bean (Phaseolus vulgaris L.) landraces. Plant Breed 124:576–581

    Article  CAS  Google Scholar 

  • Liu K, Muse S (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129. http://www.powerMarker.net

    Google Scholar 

  • Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    PubMed  CAS  Google Scholar 

  • Malysheva-Otto LV, Ganal MW, Röder Marion S (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genetics 7:6

    Article  PubMed  CAS  Google Scholar 

  • Maras M, Susnik S, Sustar-Vozlic J, Meglic V (2006) Temporal changes in genetic diversity of common bean (Phaseolus vulgaris L.) accessions cultivated between 1800 and 2000. Russ J Genet 42:775–782

    Article  CAS  Google Scholar 

  • Masi P, Spagnoletti ZP, Donini P (2003) Development and analysis of multiplex microsatellite markers sets in common bean (Phaseolus vulgaris L.). Mol Breed 11:303–313

    Article  CAS  Google Scholar 

  • McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Gu Cho Y, Huang N, Ishii T, Blair M (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89–99

    Article  PubMed  CAS  Google Scholar 

  • Miklas PN, Delorme R, Hannan R, Dickson MH (1999) Using a subsample of the core collection to identify new sources of resistance to white mold in common bean. Crop Sci 39:569–573

    Article  Google Scholar 

  • Motto M, Soressi GP, Salamini F (1978) Seed size inheritance in a cross between wild and cultivated common bean (Phaseolus vulgaris L.). Genetica (The Hague) 49:31–36

    Google Scholar 

  • Oumar I, Mariac C, Pham JL, Vigouroux Y (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theor Appl Genet 117:489–497

    Article  PubMed  CAS  Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    PubMed  CAS  Google Scholar 

  • Park SO, Coyne DP, Jung G, Skroch PW, Arnaud-Santana E, Steadman JR, Ariyarathne HM, Nienhuis J (2000) Mapping of QTL for seed size and shape traits in common bean. J Am Soc Hort Sci 125:466–475

    CAS  Google Scholar 

  • Pejic I, Ajmore-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet 97:1248–1255

    Article  CAS  Google Scholar 

  • Pritchard JK, Stehens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Reed PW, Davies JL, Copeman JB, Benett ST, Palmer SM, Pritchard LE, Gough SCL, Kawaguchi Y, Cordell HJ, Balfour KM, Jenkins SC, Powell EE, Vignal A, Todd JA (1994) Chromosome specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nature Genet 7:390–395

    Article  PubMed  CAS  Google Scholar 

  • Rohlf F (2002) NTSYS pc. Numerical taxonomy system. Exeter publishing, Setauket

    Google Scholar 

  • Rosenberg NA (2002) Distruct: a program for the graphical display of structure results. http://www.cmb.usc.edu/»noahr/distruct

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661

    Article  PubMed  CAS  Google Scholar 

  • SAS-Institute (1996) SAS/STAT Users guide 6.11. SAS Inst, Cary

  • Schwengel DA, Jedlicka AE, Nanthakumar EJ, Weber JL, Levitt RC (1994) Comparison of Fluorescence-based semi-automated genotyping of multiple microsatellite loci with autoradiographic techniques. Genomics 22:46–54

    Article  PubMed  CAS  Google Scholar 

  • Sicard D, Nanni L, Porfiri O, Bulfon D, Papa R (2005) Genetic diversity of Phaseolus vulgaris L. and P. coccineus L. landraces in central Italy. Plant Breed 124:464–472

    Article  CAS  Google Scholar 

  • Singh S, Gepts P, Debouck D (1991a) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396

    Google Scholar 

  • Singh S, Gutierrez A, Molina A, Urrea C, Gepts P (1991b) Genetic diversity in cultivated common bean. II. Marker-based analysis on morphological and agronomic traits. Crop Sci 31:23–29

    Article  CAS  Google Scholar 

  • Singh S, Nodari R, Gepts P (1991c) Genetic diversity in cultivated common bean. I. Allozymes. Crop Sci 31:19–23

    Article  CAS  Google Scholar 

  • Tar’an B, Michaels TE, Pauls KP (2002) Genetic mapping of agronomic traits in common bean (Phaseolus vulgaris L.). Crop Sci 42:544–556

    Article  Google Scholar 

  • Terán H, Singh SP (2002) Comparison of sources and lines selected for drought resistance in common bean. Crop Sci 42:64–70

    Article  PubMed  Google Scholar 

  • Thomson MJ, Septiningsih EM, Suwardjo F, Santoso TJ, Silitonga TS, McCouch SR (2007) Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theor Appl Genet 114:559–568

    Article  PubMed  CAS  Google Scholar 

  • Tohme J, Jones P, Beebe SE, Iwanaga M (1995) The combined use of agroecological and characterisation data to establish the CIAT Phaseolus vulgaris core collection. In: Hodgkin T, Brown AHD, van Hintum ThJL, Morales EAV (eds) Core collections of plant genetic resources. International Plant Genetic Resources Institute (IPGRI). Wiley-Sayce Publication, London, pp 95–107

    Google Scholar 

  • Tommasini L, Batley J, Arnold GM, Cooke RJ, Donini P, Lee D, Law JR, Lowe C, Moule C, Trick M, Edwards KJ (2003) The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor Appl Genet 106:1091–1101

    PubMed  CAS  Google Scholar 

  • CIAT (Centro Internacional de Agricultura Tropical) (1987) Standard system for the evaluation of bean germplasm. In: Schoonhoven AV, Pastor–Corrales MA (eds) Cali, Colombia

  • Voysest O, Valencia M, Amezquita M (1994) Genetic diversity among Latin American Andean and Mesoamerican common bean cultivars. Crop Sci 34:1100–1110

    Article  Google Scholar 

  • Warburton ML, Reif JC, Frisch M, Bohn M, Bedoya C, Xia XC, Crossa J, Franco J, Hoisington D, Pixley K, Taba S, Melchinger AE (2008) Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties and inbred lines. Crop Sci 48:617–624

    Article  Google Scholar 

  • Yu K, Park J, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat markers. Theor Appl Genet 117:629–640

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank A. V. Gonzales, M. Muñoz and F. Pedraza for DNA extractions and the personnel of the CIAT Genetic Resource Units and CIAT bean program for seed characterization and multiplication. We also acknowledge S. Kresovich, S. Mitchell and T. Fulton at the Institute for Genomic Diversity as well as the Cornell Biotechnology Center for support in genotyping. We are also grateful to D. Debouck and S. Beebe from CIAT for germplasm advice. This research was supported by the Generation Challenge Program and CIAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Blair.

Additional information

Communicated by D. Hoisington.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Genotype list (DOC 33 kb)

Supplementary Table (DOC 158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blair, M.W., Díaz, L.M., Buendía, H.F. et al. Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet 119, 955–972 (2009). https://doi.org/10.1007/s00122-009-1064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1064-8

Keywords

Navigation