Skip to main content
Log in

Leymus EST linkage maps identify 4NsL–5NsL reciprocal translocation, wheat-Leymus chromosome introgressions, and functionally important gene loci

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Allotetraploid (2n = 4x = 28) Leymus triticoides and Leymus cinereus are divergent perennial grasses, which form fertile hybrids. Genetic maps with n = 14 linkage groups (LG) comprised with 1,583 AFLP and 67 heterologous anchor markers were previously used for mapping quantitative trait loci (QTLs) in these hybrids, and chromosomes of other Leymus wildryes have been transferred to wheat. However, identifications of the x = 7 homoeologous groups were tenuous and genetic research has been encumbered by a lack of functional, conserved gene marker sequences. Herein, we mapped 350 simple sequence repeats and 26 putative lignin biosynthesis genes from a new Leymus EST library and constructed one integrated consensus map with 799 markers, including 375 AFLPs and 48 heterologous markers, spanning 2,381 centiMorgans. LG1b and LG6b were reassigned as LG6b* and LG1b*, respectively, and LG4Ns and LG4Xm were inverted so that all 14 linkage groups are aligned to the x = 7 Triticeae chromosomes based on EST alignments to barley and other reference genomes. Amplification of 146 mapped Leymus ESTs representing six of the seven homoeologous groups was shown for 17 wheat-Leymus chromosome introgression lines. Reciprocal translocations between 4L and 5L in both Leymus and Triticum monococcum were aligned to the same regions of Brachypodium chromosome 1. A caffeic acid O-methyltransferase locus aligned to fiber QTL peaks on Leymus LG7a and brown midrib mutations of maize and sorghum. Glaucousness genes on Leymus and wheat chromosome 2 were aligned to the same region of Brachypodium chromosome 5. Markers linked to the S self-incompatibility gene on Leymus LG1a cosegregated with markers on LG2b, possibly cross-linked by gametophytic selection. Homoeologous chromosomes 1 and 2 harbor the S and Z gametophytic self-incompatibility genes of Phalaris, Secale, and Lolium, but the Leymus chromosome-2 self-incompatibility gene aligns to a different region on Brachypodium chromosome 5. Nevertheless, cosegregation of self-incompatibility genes on Leymus presents a powerful system for mapping these loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baumann U, Juttner J, Bian X, Langridge P (2000) Self-incompatibility in the grasses. Ann Bot 85:203–209

    Article  CAS  Google Scholar 

  • Bian XY, Friedrich A, Bai JR, Baumann U, Hayman DL, Barker SJ, Langridge P (2004) High-resolution mapping of the S and Z locis of Phararis coerulescens. Genome 47:918–930

    Article  PubMed  CAS  Google Scholar 

  • Bout S, Vermerris W (2003) A candidate-gene approach to clone the Sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Gen Genomics 269:205–214

    CAS  Google Scholar 

  • Bushman BS, Larson SR, Mott IW, Cliften PF, Wang RRC, Chatterton NJ, Hernandez AG, Ali S, Kim RW, Thimmapuram J, Gong G, Liu L, Mikel (2008) Development and annotation of perennial Triticeae ESTs and SSR markers. Genome 51:779–788

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Auh CK, Dowling P, Bell J, Lehmann D, Wang ZY (2004) Transgenic down-regulation of caffeic acid O-methyltransferase (COMT) led to improved digestibility in tall fescue (Festuca arundinacea). Funct Plant Biol 31:235–245

    Article  CAS  Google Scholar 

  • Chen PD, Liu WX, Yuan JH, Wang XE, Zhou B, Wang SL, Zhang SZ, Feng YG, Yang BJ, Liu GX, Liu DJ, Qi LL, Zhang P, Friebe B, Gill BS (2005) Development and characterization of wheat-Leymus racemosus translocation lines with resistance to Fusarium Head Blight. Theor Appl Genet 111:941–948

    Article  PubMed  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svenson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szücs, Sato K, Hayes PM, Matthews DE, Klienhofs A, Muelbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton J, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  Google Scholar 

  • Cogan NOI, Smith KF, Yamada T, Fracki MG, Vecchies AC, Jones ES, Spangenberg GC, Forster JW (2005) QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:364–380

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojć P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    Article  CAS  Google Scholar 

  • Devos KM, Dubcovsky J, Dvořák J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288

    Article  CAS  Google Scholar 

  • Dewey DR (1970) Genome relations among diploid Elymus junceus and certain tetraploid and octoploid Elymus species. Am J Bot 57:633–639

    Article  Google Scholar 

  • Dewey DR (1972) Cytogenetics of tetraploid Elymus cinereus, E. triticoides, E. multicaulis, E. karatviensis, and their F1 hybrids. Bot Gaz 133:51–57

    Article  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Proceedings of the 16th Stadler Genetics Symposium, Plenum, New York, pp 209–279

  • Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvořák J (1996) Genetic map of diploid wheat. Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

    PubMed  CAS  Google Scholar 

  • Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97:968–975

    Article  CAS  Google Scholar 

  • Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lilids on insect herbivores. Ann Rev Ent 40:171–194

    Article  Google Scholar 

  • Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriquez M, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang ZY (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 108:3803–3808

    Article  PubMed  CAS  Google Scholar 

  • Goncharov NP, Sery AP, Koval SF (1998) Location of a waxy inhibitor gene in near-isogenic line ANK-26A. Russian J Genet 34:105–106

    CAS  Google Scholar 

  • Hackauf B, Wehling (2005) Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics. Theor Appl Genet 110:832–845

    Article  PubMed  CAS  Google Scholar 

  • Hayman DL, Richter J (1992) Mutations affecting self-incompatibility locus Z and a β-glucosidase locus in rye. Plant Breed 102:255–259

    Google Scholar 

  • He X, Hall MB, Gallo-Meagher M, Smith RL (2003) Improvement of forage quality by downregulation of maize O-methyltransferase. Crop Sci 43:2240–2251

    Article  CAS  Google Scholar 

  • Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. Plos One 5:e10065

    Article  PubMed  Google Scholar 

  • Hori K, Takehara S, Nankaku N, Sato K, Sasakuma T, Takeda K (2007) Barley EST markers enhance map saturation and QTL mapping in diploid wheat. Breed Sci 57:39–45

    Article  CAS  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant boil 5:224–229

    Article  CAS  Google Scholar 

  • Jefferson PG (1994) Genetic-variation for epicuticular wax production in Altai wildrye populations that differ in glaucousness. Crop Sci 32:367–371

    Article  Google Scholar 

  • Jefferson PG, Kielly GA (1996) Seed yield and quality of Altai wildrye in populations of contrasting visible glaucousness. Can J Plant Sci 76:461–464

    Article  Google Scholar 

  • Jenks MA, Joly RJ, Peters PJ, Rich PJ, Axtell JD, Ashworth EN (1994) Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.) Moench. Plant Physiol 105:1239–1245

    PubMed  CAS  Google Scholar 

  • Jensen KB, Zhang YF, Dewey DR (1990) Mode of pollination of perennial species of the Triticeae in relation to genomically defined genera. Can J Plant Sci 70:215–225

    Article  Google Scholar 

  • Jiang Q, Zhang JY, Guo X, Monteros M, Wang ZY (2009) Physiological characterization of transgenic alfalfa (Medicago sativa) plants for improved drought tolerance. Int J Plant Sci 170:969–978

    Article  CAS  Google Scholar 

  • Jiang Q, Zhang JY, Guo X, Bedair M, Sumner L, Bouton J, Wang ZY (2010) Improvement of drought tolerance in white clover (Trifolium repens) by transgenic expression of a transcription factor gene WXP1. Funct Plant Biol 37:157–165

    Article  CAS  Google Scholar 

  • Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, Kink IP, Kishida T, Yamada T, Balfourier F, Charmet C, Forster JW (2002) An enhanced molecular maker-based map of perennial ryegrass (Lolium perenne L.) reveals comparative relationships with other Poaceae species. Genome 45:282–295

    Article  PubMed  CAS  Google Scholar 

  • Jung HJ, Ni W (1998) Lignification of plant cell walls: impact of genetic manipulation. Proc Natl Acad Sci USA 95:12742–12743

    Article  PubMed  CAS  Google Scholar 

  • Karsai I, Szűcs P, Mészáros K, Filichkina T, Hayes PM, Skinner JS, Láng L, Bedő Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Larson SR, Bushman BS, Wang RRC, Mott IW, Hole D, Thimmapuram J, Gong G, Liu L (2008) Genes controlling plant growth habit in Leymus (Triticeae): maize barren stalk1 (ba1), rice lax panicle, and wheat tiller inhibition (tin3) genes as possible candidates. Funct Integr Genomics 8:375–386

    Article  PubMed  CAS  Google Scholar 

  • King IP, Purdie KA, Liu CJ, Reader SM, Pittaway TS, Orford SE, Miller TE (1994) Detection of interchromosomal translocations within the Triticeae by RFLP analysis. Genome 37:882–887

    Article  PubMed  CAS  Google Scholar 

  • Kishii M, Yamada T, Sasakuma T, Tsujimoto H (2004) Production of wheat-Leymus racemosus chromosome addition lines. Theor Appl Genet 109:255–260

    Article  PubMed  CAS  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  PubMed  CAS  Google Scholar 

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveal the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46

    Article  PubMed  CAS  Google Scholar 

  • Langridge P, Baumann U, Juttner J (1999) Revisiting and revising the self-incompatibility genetics of Phalaris coerulescens. Plant Cell 11:1826–1836

    Article  CAS  Google Scholar 

  • Larson SR, Kellog EA (2009) Genetic dissection of seed production traits and identification of a major-effect seed retention QTL in hybrid Leymus (Triticeae) wildryes. Crop Sci 49:29–40

    Article  CAS  Google Scholar 

  • Larson SR, Mayland HF (2007) Comparative mapping of fiber, protein, and mineral content QTLs in two interspecific Leymus wildrye full-sib families. Mol Breeding 20:331–347

    Article  CAS  Google Scholar 

  • Larson SR, Wu XL, Jones TA, Jensen KB, Chatterton NJ, Waldron BL, Robins JG, Bushman BS, Palazzo AJ (2006) Comparative mapping of growth habit, plant height, and flowering QTLs in two interspecific families of Leymus. Crop Sci 46:2526–2539

    Article  CAS  Google Scholar 

  • Li X, Nield J, Hayman D, Langridge P (1994) Cloning a putative self-incompatibility gene from the pollen of grass Phalaris coerulescens. Plant Cell 6:1923–1932

    Article  PubMed  CAS  Google Scholar 

  • Li X, Weng JK, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Shi J, Zhang XY, Ma Y-S, Jia JZ (2001) Screening salt tolerance germplasms and tagging the tolerance gene(s) using microsatellite (SSR) markers in wheat. Acta Bot Sinica 43:948–954

    CAS  Google Scholar 

  • Liu Q, Ni ZF, Peng HR, Song W, Liu ZY, Sun QX (2007) Molecular mapping of a dominant non-glaucous gene from synthetic hexaploid wheat (Triticum aestivum L.). Euphytica 155:71–78

    Article  CAS  Google Scholar 

  • Löve Á (1984) Conspectus of the Triticeae. Feddes Repert 95:425–521

    Google Scholar 

  • Melz G, Kaczmarek J, Szigat G (1990) Genetical analysis of rye (Secale cereale L.). Location of self-fertility genes in different inbred lines. Genet Pol 31:1–7

    Google Scholar 

  • Nelson JC, van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merrino M, Atkinson M, Leroy P (1995) Molecular mapping of wheat: homoeologous group 2. Genome 38:516–524

    Article  PubMed  CAS  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nuc Acids Res 35:D883–D887

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Maris M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DJ, Mehboob-ru-Rahman, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Patterson JT, Larson SR, Johnson PG (2005) Genome relationships in polyploid Poa pratensis and other Poa species inferred from phylogenetic analysis of nuclear and chloroplast DNA sequences. Genome 48:76–87

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Wang SL, Chen PD, Liu DJ, Friebe B, Gill BS (1997) Molecular cytogenetic analysis fo Leymus racemosus chromosomes added to wheat. Theor Appl Genet 95:1084–1091

    Article  CAS  Google Scholar 

  • Qi LL, Pumphrey MO, Briebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet 117:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genomewide analysis of the cinnamyl alchol dehydrogenase family in Sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the Brown midrib6 gene. Genetics 181:783–795

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Nankaku N, Motoi Y, Takeda K (2004) A high-density transcript linkage map of barley derived from a single population. Heredity 103:110–117

    Article  Google Scholar 

  • Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF (2009) A nonsense mutation in a cinnamyl alchol dehydrogenase gene is responsible for the Sorghum brown midrib6 phenotype. Plant Physiol 150:584–595

    Article  PubMed  CAS  Google Scholar 

  • Senft P, Wricke G (1996) An extended genetic map of rye (Secale cereale L.). Plant Breed 115:508–510

    Article  Google Scholar 

  • Shinozuka H, Cogan NOI, Smith KF, Spangenberg GC, Forster JW (2010) Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant Mol Biol 72:343–355

    Article  PubMed  CAS  Google Scholar 

  • Subbarao GV, Tomohiro B, Masahiro K, Osamu I, Samejima H, Wang HY, Pearse SJ, Gopalakrishnan S, Nakahara K, Zakir-Hossain AKM, Tsujimoto H, Berry WL (2007) Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming? Plant Soil 299:55–64

    Article  CAS  Google Scholar 

  • Taylor CK, Madsen S, Borg S, Moller MG, Boelt B, Holm PB (2001) The development of sequence-tagged sites (STSs) in Lolium perenne L.: the application of primer sets derived from other general. Theor Appl Genet 103:648–658

    Article  CAS  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Tsunewaki K, Ebana K (1999) Production of near-isogenic lines of common wheat for glaucousness and genetic basis of this trait clarified by their use. Genes Genet Syst 74:33–41

    Article  Google Scholar 

  • Tu Y, Rochfort S, Liu Z, Ran Y, Griffith M, Badenhorst P, Louie GV, Bowman M, Smith KF, Noel JP, Mouradov A, Spangenbert G (2010) Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reducatse genes from perennial ryegrass (Lolium perenne). Plant Cell 22:3357–3373

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen

    Google Scholar 

  • Van Ooijen JW (2009) MapQTL® 6. Software for the mapping of quantitative trait loci in experimental populations of diploid speices. Kyazma B.V, Wageningen

    Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdoménech P (1995) The brown midrib (bm3) mutation in maize occurs in the gene encoding caffiec acid O-methyltransferase. Plant Cell 7:407–416

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. Heredity 93:77–78

    Article  CAS  Google Scholar 

  • Voylokov AV, Korzun V, Börner A (1997) Mapping of three self-fertility mutations in rye (Secale cereal L.) using RFLP, isozyme, and morphological markers. Theor Appl Genet 97:147–153

    Article  Google Scholar 

  • Wang LS, Chen PD (2008) Development of Triticum aestivumLeymus racemosus ditelosomic substitution line 7Lr#1S(7A) with resistance to wheat scab and its meiotic behavior analysis. Chin Sci Bull 53:3522–3529

    Article  CAS  Google Scholar 

  • Wang RR-C, Jensen KB (1994) Absence of the J genome in Leymus species (Poaceae: Triticeae): evidence from DNA hybridization and meiotic pairing. Genome 37:231–235

    Article  PubMed  CAS  Google Scholar 

  • Wang RRC, von Bothmer R, Dvorak J, Linde-Laursen I, Muramatsu M (1994) Genome symbols in the Triticeae (Poaceae). In: Wang et al. (eds) Proceedings of the Second International Triticeae Symposium, pp 29-34. Utah State University Press, Logan

  • Wang RRC, Zhang JY, Lee B, Jensen KB, Kishii M, Tsujimoto H (2006) Variations in abundance of two repetitive sequences in Leymus and Psathyrostachys species. Genome 49:511–519

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Yuan JH, Bie TD, Zhou B, Chen PD (2009) Cytogenetic and molecular identification of three Triticum aestivumLeymus racemosus translocation addition lines. J Genet Genomics 36:379–385

    Article  PubMed  CAS  Google Scholar 

  • Wang LS, Chen PD, Wang XE (2010a) Molecular cytogenetic analysis of Triticum aestivumLeymus racemosus reciprocal translocation T7DS.5LrL/T5LrS.7DL. Chin Sci Bull 55:1026–1031

    CAS  Google Scholar 

  • Wang RRC, Larson SR, Jensen KB (2010b) Analyses of Thinopyrum bessarabicum, T. elongatum, and T. junceum chromosomes using EST-SSR markers. Genome 37:231–235

    Article  Google Scholar 

  • Watanabe N, Takesada N, Shibata Y, Ban T (2005) Genetic mapping of the genes for glaucous leaf and tough rachis in Aegilops tauschii, the D-genome progenitor of wheat. Euphytica 144:119–123

    Article  CAS  Google Scholar 

  • Wu XL, Larson SR, Hu ZM, Palazzo AJ, Jones TA, Wang RRC, Jensen KB, Chatterton NJ (2003) Molecular genetic linkage maps for allotetraploid Leymus (Triticeae). Genome 46:627–646

    Article  PubMed  CAS  Google Scholar 

  • Yan LL, Loukaoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Zhang HB, Dvorak J (1991) The genome origin of tetraploid species of Leymus (Poaceae: Triticeae) inferred from variation in repeated nucleotide sequences. Am J Bot 78:871–884

    Article  Google Scholar 

Download references

Acknowledgments

Wheat-Leymus racemosus chromosome addition lines described by Qi et al. (1997) were kindly provided by the Kansas State University, Wheat Genetic and Genomic Resources Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Larson.

Additional information

Communicated by T. Komatsuda.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, S.R., Kishii, M., Tsujimoto, H. et al. Leymus EST linkage maps identify 4NsL–5NsL reciprocal translocation, wheat-Leymus chromosome introgressions, and functionally important gene loci. Theor Appl Genet 124, 189–206 (2012). https://doi.org/10.1007/s00122-011-1698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1698-1

Keywords

Navigation