Skip to main content
Log in

Genes controlling plant growth habit in Leymus (Triticeae): maize barren stalk1 (ba1), rice lax panicle, and wheat tiller inhibition (tin3) genes as possible candidates

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Leymus cinereus and L. triticoides are large caespitose and rhizomatous perennial grasses, respectively. Previous studies detected quantitative trait loci (QTL) controlling rhizome spreading near the viviparous1 (vp1) gene markers on linkage groups LG3a and LG3b in two families, TTC1 and TTC2, derived from Leymus triticoides × Leymus cinereus hybrids. The wheat tiller inhibition gene (tin3) is located on Triticum monococcum chromosome 3 AmL near vp1. Triticeae group 3 is reportedly collinear with rice chromosome 1, which also contains the maize barren stalk1 and rice lax branching orthogene near vp1. However, previous studies lacked cross-species markers for comparative mapping and showed possible rearrangements of Leymus group 3 in wheat-Leymus racemosus chromosome addition lines. Here, we developed expressed sequence tag (EST) markers from Leymus tiller and rhizomes and mapped sequences aligned to rice chromosome 1. Thirty-eight of 44 informative markers detected loci on Leymus LG3a and LG3b that were collinear with homoeologous sequences on rice chromosome 1 and syntenous in homoeologous group 3 wheat-Leymus and wheat-Thinopyrum addition lines. A SCARECROW-like GRAS-family transcription factor candidate gene was identified in the Leymus EST library, which aligns to the Leymus chromosome group 3 growth habit QTL and a 324-kb rice chromosome 1 region thought to contain the wheat tin3 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A 90:7980–7984

    Article  PubMed  CAS  Google Scholar 

  • Akhunov ED, Goodyear AW, Geng S, Qi L-L, Echalier B, Gill BS, Miftahudin J, Gustafson PJ, Lazo G, Chao S, et al (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosomes arms. Genome Res 13:753–763

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) A new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anamthawat-Jónsson K (2005) The Leymus NS-Genome. Czech J Genet Plant Breed 41:13–20

    Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  PubMed  CAS  Google Scholar 

  • Anderson JV, Horvath DP, Chao WS, Foley ME, Hernandez AG, Thimmapuram J, Liu L, Gong GL, Band M, Kim R, Mikel MA (2007) Characterization of an EST database for the perennial weed leafy spurge, an important resource for weed biology research. Weed Sci 55:193–203

    Article  CAS  Google Scholar 

  • Bailey PC, McKibbin RS, Lenton JR, Holdsworth MJ, Flintham JE, Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet 98:281–284

    Article  CAS  Google Scholar 

  • Benham J, Jeung J-U, Jasieniuk M, Kanazin V, Blake T (1999) Genographer: a graphical tool for automated AFLP and microsatellite analysis. J Agric Genomics 4. Accessed at http://www.ncgr.org/jag/

  • Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    Article  PubMed  CAS  Google Scholar 

  • Delaney DE, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995) Cytologically based physical maps of the group-3 chromosomes of wheat. Theor Appl Genet 91:780–782

    CAS  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    Article  PubMed  CAS  Google Scholar 

  • Dewey DR (1970) Genome relations among diploid Elymus junceus and certain tetraploid and octoploid Elymus species. Amer J Bot 57:633–639

    Article  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Proc of the 16th Stadler Genetics Symposium. Plenum, New York

    Google Scholar 

  • Dickson D, Cyranoski D (2001) Commercial sector scores success with whole rice genome. Nature 409:551

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A 95:8135–8140

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Knott DR (1974) Disomic and ditelosomic addition of diploid Agropyron elongatum chromosomes to Triticum aestivum. Can J Genet Cytol 16:399–417

    Google Scholar 

  • Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baensiger PS, Gill KS (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res 32:3546–3565

    Article  PubMed  CAS  Google Scholar 

  • Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pé ME, Schmidt RJ (2004) The role of barren stalk1 in the architecture of maize. Nature 432:630–635

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    PubMed  CAS  Google Scholar 

  • Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of Sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci U S A 87:4251–4255

    Article  PubMed  CAS  Google Scholar 

  • Kishii M, Yamada T, Sasakuma T, Tsujimoto H (2004) Production of wheat-Leymus racemosus chromosome addition lines. Theor Appl Genet 109:255–260

    Article  PubMed  CAS  Google Scholar 

  • Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003) LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci U S A 100:11765–11770

    Article  PubMed  CAS  Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoint. Genetics 154:397–412

    PubMed  Google Scholar 

  • Kuraparthy V, Sood S, Gill BS (2008) Genomic targeting and mapping of tiller inhibition gene (tin3) of wheat using ESTs and synteny with rice. Funct Integr Genomics 8:33–42

    Article  PubMed  CAS  Google Scholar 

  • La Rota M, Sorrels ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46

    Article  PubMed  Google Scholar 

  • Larson SR, Wu X-L, Jones TA, Jensen KB, Chatterton NJ, Waldron B, Robins GR, Bushman BS, Palazzo AJ (2006) Growth habit, plant height, and flowering QTLs in North American Leymus wildryes. Crop Sci 46:2526–2539

    Article  CAS  Google Scholar 

  • Löve Á (1984) Conspectus of the Triticeae. Feddes Rep 95:425–521

    Google Scholar 

  • Lukaszewski AJ, Curtis CA (1993) Physical distribution of recombination in B-genome chromosomes of tetraploid wheat. Theor Appl Genet 86:121–127

    Article  CAS  Google Scholar 

  • Perovic D, Stein N, Zhang H, Drescher A, Prasad M, Kota R, Kopahnke D, Graner A (2004) An integrated approach for comparative mapping in rice and barley based on genomic resources reveals a large number of syntenic markers but no candidate gene for the Rph16 resistance locus. Funct Integr Genomics 4:74–83

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Wang SL, Chen PD, Liu DJ, Friebe B, Gill BS (1997) Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor Appl Genet 95:1084–1091

    Article  CAS  Google Scholar 

  • Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Melia-Hancock S, Musket T, et al (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48:463–481

    Article  PubMed  CAS  Google Scholar 

  • Stein N (2007) Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chromosome Res 15:21–31

    Article  PubMed  CAS  Google Scholar 

  • Sorrels ME, LaRota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin J, Mahmoud A, Ma X, Gustafson PJ, et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    Google Scholar 

  • Suyama H, Benes SE, Robinson PH, Getachew G, Gratten SR, Grieve CM (2007a) Biomass yield and nutritional quality of forage species under long-term irrigation with saline-sodic drainage water: field evaluation. Anim Feed Sci Technol 135:329–345

    Article  CAS  Google Scholar 

  • Suyama H, Benes SE, Robinson PH, Gratten SR, Grieve CM, Getachew G (2007b) Forage yield and quality under irrigation with saline-sodic drainage water: greenhouse evaluation. Agric Water Mange 88:159–172

    Article  Google Scholar 

  • Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248:744–754

    Article  Google Scholar 

  • Van Ooijen JW (2004) MapQTL ® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma, Wageningen

    Google Scholar 

  • Van Ooijen JW (2006) JoinMap ® 4.0, Software for calculation of genetic linkage maps in experimental populations. Kyazma, Wageningen

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotech 23:48–55

    Article  CAS  Google Scholar 

  • Varshney RK, Grosse I, Hähnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Graner A (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor Appl Genet 113:239–250

    Article  PubMed  CAS  Google Scholar 

  • Vogel KP, Arumuganathan K, Jensen K (1999) Nuclear DNA content of perennial grasses of the Triticeae. Crop Sci 39:661–667

    Google Scholar 

  • Voorrips RE (2002) MapChart, software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78

    Article  CAS  Google Scholar 

  • Wang RRC, Jensen KB (1994) Absence of the J genome in Leymus species (Poaceae: Triticeae): evidence from DNA hybridization and meiotic pairing. Genome 37:231–235

    Article  PubMed  CAS  Google Scholar 

  • Werner JE, Endo TR, Gill BS (1992) Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci USA 89:11307–11311

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Larson SR, Hu Z, Palazzo AJ, Jones TA, Wang RR-C, Jensen KB, Chatterton NJ (2003) Molecular genetic linkage maps for allotetraploid Leymus wildryes (Gramineae: Triticeae). Genome 46:627–646

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zhang HB, Dvorak J (1991) The genome origin of tetraploid species of Leymus (Poaceae: Triticeae) inferred from variation in repeated nucleotide sequences. Am J Bot 78:871–884

    Article  Google Scholar 

  • Zhang JY, Li XM, Wang RRC, Cortes A, Rosas V, Mujeeb-Kazi A (2002) Molecular cytogenetic characterization of E b-genome chromosomes in Thinopyrum bessarabicum disomic addition lines of bread wheat. Int J Plant Sci 163:167–174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Larson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table S1

(XLS 474 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, P., Larson, S.R., Shaun Bushman, B. et al. Genes controlling plant growth habit in Leymus (Triticeae): maize barren stalk1 (ba1), rice lax panicle, and wheat tiller inhibition (tin3) genes as possible candidates. Funct Integr Genomics 8, 375–386 (2008). https://doi.org/10.1007/s10142-008-0085-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-008-0085-8

Keywords

Navigation