Skip to main content
Log in

Isolated chromosomes as a new and efficient source of DArT markers for the saturation of genetic maps

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We describe how the diversity arrays technology (DArT) can be coupled with chromosome sorting to increase the density of genetic maps in specific genome regions. Chromosome 3B and the short arm of chromosome 1B (1BS) of wheat were isolated by flow cytometric sorting and used to develop chromosome- and chromosome arm-enriched genotyping arrays containing 2,688 3B clones and 384 1BS clones. Linkage analysis showed that 553 of the 711 polymorphic 3B-derived markers (78%) mapped to chromosome 3B, and 59 of the 68 polymorphic 1BS-derived markers (87%) mapped to chromosome 1BS, confirming the efficiency of the chromosome-sorting approach. To demonstrate the potential for saturation of genetic maps, we constructed a consensus map of chromosome 3B using 19 mapping populations, including some that were genotyped with the 3B-enriched array. The 3B-derived DArT markers doubled the number of genetic loci covered. The resulting consensus map, probably the densest genetic map of 3B available to this date, contains 939 markers (779 DArTs and 160 other markers) that segregate on 304 genetically distinct loci. Importantly, only 2,688 3B-derived clones (probes) had to be screened to obtain almost twice as many polymorphic 3B markers (510) as identified by screening approximately 70,000 whole genome-derived clones (269). Since an enriched DArT array can be developed from less than 5 ng of chromosomal DNA, a quantity which can be obtained within 1 h of sorting, this approach can be readily applied to any crop for which chromosome sorting is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Vanessa C, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Rathmell B, Vaughan P, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274:227–274

    Article  CAS  PubMed  Google Scholar 

  • Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120

    Article  Google Scholar 

  • Doležel J, Kubaláková M, Bartoš J, Macas J (2004) Flow cytogenetics and plant genome mapping. Chrom Res 12:77–91

    Article  PubMed  Google Scholar 

  • Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C (2007) Chromosome-based genomics in cereals. Chrom Res 15:51–66

    Article  PubMed  Google Scholar 

  • Doležel J, Šimková H, Kubaláková M, Šafář J, Suchánková P, Číhalíková J, Bartoš J, Valárik M (2009) Chromosome genomics in the Triticeae. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer, Berlin, pp 285–316

    Chapter  Google Scholar 

  • Doveri S, Lee D, Maheswaran M, Powell W (2008) Molecular markers: history, features and applications. In: Kole C, Abbott AG (eds) Principles and practices of plant genomics, vol 1. Genome mapping. Science Publishers, Enfield, pp 23–67

    Google Scholar 

  • Feuillet C, Eversole K (2008) Physical mapping of the wheat genome: a coordinated effort to lay the foundation for genome sequencing and develop tools for breeders. Isr J Plant Sci 55:307–313

    Article  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Google Scholar 

  • Hobza R, Vyskot B (2007) Laser microdissection-based analysis of plant sex chromosomes. Methods Cell Biol 82:433–453

    Article  CAS  PubMed  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  CAS  PubMed  Google Scholar 

  • Janda J, Bartoš J, Šafář J, Kubaláková M, Valárik M, Číhalíková J, Šimková H, Caboche M, Sourdille P, Bernard M, Chalhoub B, Doležel J (2004) Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor Appl Genet 109:1337–1345

    Article  CAS  PubMed  Google Scholar 

  • Janda J, Šafář J, Kubaláková M, Bartoš J, Kovářová P, Suchánková P, Pateyron S, Číhalíková J, Sourdille P, Šimková H, Fairaivre-Rampant P, Hřibová E, Bernard M, Lukaszewski A, Doležel J, Chalhoub B (2006) Advanced resources for plant genomics: BAC library specific for the short arm of wheat chromosome 1B. Plant J 47:977–986

    Article  CAS  PubMed  Google Scholar 

  • Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska K, Cayla C, Patarapuwadol S, Xia L, Yang S, Thomson B (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips RL, Gale M (eds) In the wake of the double helix: from the green revolution to the gene revolution bologna. Avenue media, Bologna, pp 443–461

    Google Scholar 

  • Kofler R, Bartoš J, Gong L, Stift G, Suchánková P, Šimková H, Berenyi M, Burg K, Doležel J, Lelley T (2008) Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1. Theor Appl Genet 117:915–926

    Article  CAS  PubMed  Google Scholar 

  • Kubaláková M, Vrána J, Číhalíková J, Šimková H, Doležel J (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:1362–1372

    Article  PubMed  Google Scholar 

  • Lincoln SE, Lander ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604–610

    Article  CAS  PubMed  Google Scholar 

  • Mayer KFX, Taudien S, Martis M, Šimková H, Suchánková P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, Scholz U, Graner A, Platzer M, Doležel J, Stein N (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Scalabrin S, Morgante M (2004) Mapping and sequencing complex genomes: let’s get physical! Nat Rev Genet 5:578–588

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HT, Wu X (2005) Molecular marker systems for genetic mapping. In: Meksem K, Kahl G (eds) The handbook of plant genome mapping. Wiley-VCH, Weinheim, pp 23–52

    Chapter  Google Scholar 

  • Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Bergès H, Eversole K, Appels R, Šafář J, Šimková H, Doležel J, Bernard M, Feuillet C (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  CAS  PubMed  Google Scholar 

  • Požárková D, Koblížková A, Román B, Torres AM, Lucretti S, Lysák MA, Doležel J, Macas J (2002) Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol Plant 45:337–345

    Article  Google Scholar 

  • Román B, Satovic Z, Požárková D, Macas J, Doležel J, Cubero JI, Torres AM (2004) Development of a composite map in Vicia faba, breeding applications and future prospects. Theor Appl Genet 108:1079–1088

    Article  PubMed  Google Scholar 

  • Šafář J, Bartoš J, Janda J, Bellec A, Kubaláková M, Valárik M, Pateyron S, Weiserová J, Tušková R, Číhalíková J, Vrána J, Šimková H, Faivre-Rampant P, Sourdille P, Caboche M, Bernard M, Doležel J, Chalhoub B (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968

    Article  PubMed  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Missouri Agric Exp Stn Res Bull 572:1–58

    Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    Article  CAS  PubMed  Google Scholar 

  • Šimková H, Šafář J, Suchánková P, Kovářová P, Bartoš J, Kubaláková M, Janda J, Číhalíková J, Mago R, Lelley T, Doležel J (2008a) A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale L.) chromosome 1R (1RS). BMC Genomics 9:237

    Article  PubMed  Google Scholar 

  • Šimková H, Svensson JT, Condamine P, Hřibová E, Suchánková P, Bhat PR, Bartoš J, Šafář J, Close TJ, Doležel J (2008b) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294

    Article  PubMed  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarch H, Snape J, Perretant M, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in beat. Theor Appl Genet 106:530–538

    CAS  PubMed  Google Scholar 

  • Valárik M, Bartoš J, Kovářová P, Kubaláková M, de Jong H, Doležel J (2004) High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J 37:940–950

    Article  PubMed  Google Scholar 

  • Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995) Comparative mapping in grasses: wheat relationships. Mol Gen Genet 248:744–754

    Article  PubMed  Google Scholar 

  • van Os H, Stam P, Visser RGF, van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  CAS  PubMed  Google Scholar 

  • Vláčilová K, Ohri D, Vrána J, Číhalíková J, Kubaláková M, Kahl G, Doležel J (2002) Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chrom Res 10:695–706

    Article  PubMed  Google Scholar 

  • Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA, Doležel J (2000) Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041

    PubMed  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    Article  CAS  PubMed  Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and phenotypic traits. BMC Genomics 7:206

    Article  PubMed  Google Scholar 

  • White J, Law JR, MacKay I, Chalmers KJ, Smith JS, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jarmila Číhalíková and the data production team at Diversity Arrays Technology Pty. Ltd. for excellent technical assistance. This work was supported by research grant no. LC06004 from the Czech Ministry of Education, Youth and Sports and the Grains Research and Development Corporation (GRDC) of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Doležel.

Additional information

Communicated by M. Sorrells.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 177 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenzl, P., Suchánková, P., Carling, J. et al. Isolated chromosomes as a new and efficient source of DArT markers for the saturation of genetic maps. Theor Appl Genet 121, 465–474 (2010). https://doi.org/10.1007/s00122-010-1323-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1323-8

Keywords

Navigation