Skip to main content
Log in

Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The analysis of the hexaploid wheat genome (Triticum aestivum L., 2n=6x=42) is hampered by its large size (16,974 Mb/1C) and presence of three homoeologous genomes (A, B and D). One of the possible strategies is a targeted approach based on subgenomic libraries of large DNA inserts. In this work, we purified by flow cytometry a total of 107 of three wheat D-genome chromosomes: 1D, 4D and 6D. Chromosomal DNA was partially digested with HindIII and used to prepare a specific bacterial artificial chromosome (BAC) library. The library (designated as TA-subD) consists of 87,168 clones, with an average insert size of 85 kb. Among these clones, 53% had inserts larger than 100 kb, only 29% of inserts being shorter than 75 kb. The coverage was estimated to be 3.4-fold, giving a 96.5% probability of identifying a clone corresponding to any sequence on the three chromosomes. Specificity for chromosomes 1D, 4D and 6D was confirmed after screening the library pools with single-locus microsatellite markers. The screening indicated that the library was not biased and gave an estimated coverage of sixfold. This is the second report on BAC library construction from flow-sorted plant chromosomes, which confirms that dissecting of the complex wheat genome and preparation of subgenomic BAC libraries is possible. Their availability should facilitate the analysis of wheat genome structure and evolution, development of cytogenetic maps, construction of local physical maps and map-based cloning of agronomically important genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhunov ED, Akhunova AR, Linkiewicz AM, et al (2003) Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates. Proc Natl Acad Sci USA 100:10836–10841

    Article  CAS  PubMed  Google Scholar 

  • Allouis S, Moore G, Bellec A, Sharp R, Faivre P, Montimer K, Pateyron S, Foote T, Griffiths S, Caboche M, Chalhoub B (2003) Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm ‘Chinese Spring’. Cereal Res Comm 31:331–338

    CAS  Google Scholar 

  • Anderson OD, Greene FC (1997) The alpha-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95:59–65

    Article  CAS  Google Scholar 

  • Anderson OD, Rausch C, Moullet O, Lagudah E (2003) The wheat D-genome HMW-glutenin locus: BAC sequencing, gene distribution, and retrotransposon clusters. Funct Integr Genomics 3:56–68

    CAS  PubMed  Google Scholar 

  • Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Proc R Soc Lond B 334:309–345

    CAS  Google Scholar 

  • Boyko EV, Gill KS, Mickelson-Young L, Nasuda S, Raupp WJ, Ziegle JN, Singh S, Hassawi DS, Fritz AK, Namuth D, Lapitan NL, Gill BS (1999) A high-density genetic linkage map of Aegilops tauschii, the D-genome progenitor of bread wheat. Theor Appl Genet 99:16–26

    Article  CAS  Google Scholar 

  • Boyko E, Kalendar R, Korzun V, Fellers J, Korol A, Schulman AH, Gill BS (2002) A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol Biol 48:767–790

    Article  CAS  PubMed  Google Scholar 

  • Brooks SA, Huang L, Gill BS, Fellers JP (2002) Analysis of 106 kb of contiguous DNA sequence from D genome of wheat reveals high gene density and a complex arrangement of genes related to disease resistance. Genome 45:963–972

    Article  CAS  PubMed  Google Scholar 

  • Cadalen T, Sourdille P, Charmet G, Tixier MH, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M (1998) Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor Appl Genet 96:933–940

    Article  CAS  Google Scholar 

  • Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J (2003) Construction and characterization of a half million clone BAC library of durum wheat (Tridicum turgidum ssp. durum). Theor Appl Genet 107:931–939

    Article  CAS  PubMed  Google Scholar 

  • Chalhoub B, Belcram H, Caboche M (2004) Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size. Plant Biotechnol J 2:181–188

    Article  CAS  Google Scholar 

  • Chantret N, Cenci A, Sabot F, Anderson O, Dubcovsky J (2004) Sequencing of the Triticum monococcum hardness locus reveals good microcolinearity with rice. Mol Genet Genomics 271:377–386

    Article  CAS  PubMed  Google Scholar 

  • Clarke L, Carbon J (1976) A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell 9:91–99

    Article  CAS  PubMed  Google Scholar 

  • Daud HM, Gustafson JP (1996) Molecular evidence for Triticum speltoides as a B-genome progenitor of wheat (Triticum aestivum). Genome 39:543–548

    CAS  Google Scholar 

  • Doležel J, Kubaláková M, Bartoš J, Macas J (2004) Flow cytogenetics and plant genome mapping. Chromosome Res 12:77–91

    Article  PubMed  Google Scholar 

  • Dvorak J, di Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats—Identification of the A-genome donor species. Genome 36:21–31

    CAS  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    CAS  PubMed  Google Scholar 

  • Feldman M, Lupton FGH, Miller TE (1995) Wheats. In: Smartt J, Simmonds NW (eds) Evolution of crops, 2nd edn. Longman Scientific, London, pp 184–192

    Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster AM, Buell RC, Bennetzen JL, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier F, Sasaki T (2004) A Workshop Report on Wheat Genome Sequencing. International Genome Research on Wheat (IGROW) Consortium. Genetics (in press)

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characterisation of polymorphic markers from T. tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  CAS  PubMed  Google Scholar 

  • Islam-Faridi MN, Childs KL Klein PE, Hodnett G, Menz MA, Klein RR, Rooney WL, Mullet JE, Stelly DM, Price HJ (2002) A molecular cytogenetic map of sorghum chromosome 1: fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161:345–353

    CAS  PubMed  Google Scholar 

  • Jackson SA, Cheng Z, Wang ML, Goodman HM, Jiang J (2000) Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics 156:833–838

    CAS  PubMed  Google Scholar 

  • Kim JS, Childs KL, Islam-Faridi MN, Menz MA, Klein RR, Klein PE, Price HJ, Mullet JE, Stelly DM (2002) Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 45:402–412

    Article  CAS  PubMed  Google Scholar 

  • King IP, Cant KA, Law CN, Worland AJ, Orford SE, Reader SM, Miller TE (1996) An assessment of the potential of 4DS.4DL-4sL translocation lines as a means of eliminating tall off types in semi-dwarf wheat varieties. Euphytica 89:103–106

    Google Scholar 

  • Kubaláková M, Vrána J, Číhalíková J, Šimková H, Doležel J (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:1362–1372

    Article  PubMed  Google Scholar 

  • Lagudah E, Dubcovsky J, Powell W (2001) Wheat genomics. Plant Physiol Biochem 39:1–10

    Article  Google Scholar 

  • Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing R, Dubcovsky J (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42:1176–1182

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Zhu Y, Keller B (2003) High-resolution mapping of the leaf rust disease resistance gene Lr1 in wheat and characterization of BAC clones from the Lr1 locus. Theor Appl Genet 106:875–882

    CAS  PubMed  Google Scholar 

  • Liu YG, Nagaki K, Fujita M, Kawaura K, Uozumi M, Ogohara Y (2000) Development of an efficient maintenance and screening system for large-insert genomic DNA libraries of hexaploid wheat in a transformation-competent artificial chromosome (TAC) vector. Plant J 23:687–695

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Weining S, Sharp PJ, Liu C (2000) Non-gridded library: a new approach for BAC (bacterial artificial chromosome) exploitation in hexaploid wheat (Triticum aestivum). Nucleic Acids Res 28:106–111

    Article  Google Scholar 

  • Moullet O, Zhang HB, Lagudah ES (1999) Construction and characterisation of a large DNA insert library from the D genome of wheat. Theor Appl Genet 99:305–313

    Article  Google Scholar 

  • Nilmalgoda SD, Cloutier S, Walichnowski AZ (2003) Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46:870–878

    Article  CAS  PubMed  Google Scholar 

  • Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Biol Rep 18:243–253

    CAS  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops Triticum) group. Plant Cell 13:1735–1747

    Article  CAS  PubMed  Google Scholar 

  • Peterson DG, Wessler SR, Paterson AH (2002) Efficient capture of unique sequences from eukaryotic genomes. Trends Genet 18:547–550

    Article  CAS  PubMed  Google Scholar 

  • Röder MS, Korsun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of the wheat genome. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rodriguez Milla MA, Gustafson JP (2001) Genetic and physical characterization of chromosome 4DL in wheat. Genome 44:883–892

    Article  PubMed  Google Scholar 

  • Sabelli PA, Shewry RB (1991) Characterization and organization of gene families at the Gli-1 loci of bread and durum wheats by restriction fragment analysis. Theor Appl Genet 83:209–216

    Google Scholar 

  • Šafář J, Bartoš J, Janda J, Bellec A, Kubaláková M, Valárik M, Pateyron S, Weiserová J, Tušková J, Číhalíková J, Vrána J, Šimková H, Faivre-Rampant P, Sourdille P, Caboche M, Bernard M, Doležel J, Chalhoub B (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968

    Google Scholar 

  • Šimková H, Číhalíková J, Vrána J, Lysák MA, Doležel J (2003) Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol Plant 46:369–373

    Article  Google Scholar 

  • Smith DB, Flavell RB (1975) Characterization of the wheat genome by renaturation kinetics. Chromosoma 50:223–242

    CAS  Google Scholar 

  • Sourdille P, Charmet G, Trottet M, Tixier MH, Boeuf C, Nègre S, Barloy D, Bernard M (1998) Linkage between RFLP molecular markers and the dwarfing genes Rht-B1 and Rht-D1 in wheat. Hereditas 128:41–46

    Article  CAS  Google Scholar 

  • Sourdille P, Guyomarc’h H, Baron C, Gandon B, Chiquet V, Artiguenave F, Edwards K, Foisset N, Dufour P, Bernard M (2001) Improvement of the genetic maps of wheat using new microsatellite markers. In: Proceedings of 9th plant and animal genome. Final abstract guide. San Diego, p 167

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion mapping system for the establishment of genetic map—physical map relationships in wheat. Funct Integr Genomics 4:12–25

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Moullet O, Laroche A, Lagudah ES (2000) Highly recombinogenic regions at seed storage protein loci on chromosome 1DS of Aegilops tauschii, the D-genome donor of wheat. Genetics 155:361–367

    CAS  PubMed  Google Scholar 

  • Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B (2000) Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci USA 97:13346–13444

    Google Scholar 

  • Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA, Doležel J (2000) Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041

    PubMed  Google Scholar 

  • Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B (2001) Analysis of a continuous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26:307–316

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu ZD, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15:1186–1197

    Article  CAS  PubMed  Google Scholar 

  • Woo SS, Jiang J, Gill BS, Paterson AH, Wing RR (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22:4922–4931

    CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalisation gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, SanMiguel PJ, Bennetzen JL (2003) High-Cot sequence analysis of the maize genome. Plant J 34:249–255

    CAS  PubMed  Google Scholar 

  • Zhang HB, Wu C (2001) BAC as tools for genome sequencing. Plant Physiol Biochem 39:195–209

    Article  CAS  Google Scholar 

  • Zhang P, Li W, Fellers J, Friebe B, Gill BS (2004) BAC-FISH identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112:288–299

    Article  CAS  PubMed  Google Scholar 

  • Ziolkowski PA, Sadowski J (2002) FISH-mapping of rDNA and Arabidopsis BACs on pachytene complements of selected Brassicas. Genome 45:189–197

    Article  CAS  PubMed  Google Scholar 

  • Zwick MS, Hanson RE, McKnith TD, Islam-Faridi MN, Stelly DM, Wing RA, Price HJ (1997) A rapid procedure for the isolation of C(0)t-1 DNA from plants. Genome 40:138–142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues Arnaud Bellec, Michaela Libosvárová, Stephanie Pateyron, Radka Tušková and Jitka Weiserová for excellent technical assistance. This work was supported by research grants from the Grant Agency of the Czech Republic (522/03/0354 and 521/04/0607), Ministry of Agriculture of the Czech Republic (QC 1336), research grants from the French Ministry of Research and Agriculture, and by a collaborative project ‘Barrande’ (reg. no. 2003-035-2) between the Ministry of Education, Youth and Sports of the Czech Republic and the French Ministry of Foreign Affairs and Education. J. Janda acknowledges the receipt of a Marie Curie Ph.D. Student Fellowship at URGV-INRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Doležel.

Additional information

Communicated by P. Langridge

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janda, J., Bartoš, J., Šafář, J. et al. Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor Appl Genet 109, 1337–1345 (2004). https://doi.org/10.1007/s00122-004-1768-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1768-8

Keywords

Navigation