Skip to main content
Log in

Genotyping-by-sequencing empowered genetic diversity analysis of Jordanian oat wild relative Avena sterilis

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Recent advances in next generation sequencing technologies make genotyping-by-sequencing (GBS) more feasible for molecular characterization of plant germplasm with complex and unsequenced genomes. Here we applied the GBS technology to assess the genetic diversity of 275 hexaploid oat wild relative (Avena sterilis) plants collected from 24 natural populations in Jordan. Total genomic DNAs were extracted and digested with restriction enzymes PstI and MspI. Three Illumina MiSeq sequencing runs generated 556 paired-end FASTQ files with 127,128,438 raw sequences. Bioinformatics analysis identified an informative matrix of 275 samples × 12,999 SNP markers. Analysis revealed 52.4% of SNP variation residing among 24 populations and eight major genetic clusters of the samples. Most samples were grouped together within their original populations. A significant association of pairwise population genetic distances was found with latitudinal or longitudinal differences. Two natural populations were highly differentiated from the others, and 30 highly distinct A. sterilis samples were identified from seven populations. These findings are useful for understanding genetic variability and conservation of natural A. sterilis populations, and they demonstrate the advances of the GBS application for germplasm characterization of crop wild relatives with complex genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bekele WA, Wight CP, Chao S, Howarth CJ, Tinker NA (2018) Haplotype based genotyping-by-sequencing in oat genome research. Plant Biotechnol J. https://doi.org/10.1111/pbi.12888

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Brown AHD, Brubaker CL, Grace JP (1997) Regeneration of germplasm samples: wild versus cultivated plant species. Crop Sci 37:7–13

    Article  Google Scholar 

  • Castañeda-Álvarez NP, Khoury CK, Achicanoy HA et al. (2016) Global conservation priorities for crop wild relatives. Nat Plants 2:16022

    Article  PubMed  Google Scholar 

  • Clamot G, Rivoal R (1984) Genetic resistance to cereal cyst nematode Heterodera avenae Woll. in wild oat Avena sterilis I. 376. Euphytica 33:27–32

    Article  Google Scholar 

  • Coffman FA (1977) Oat history, identification and classification. USDA-ARS Tech Bull No. 1516, Washington, DC, USA

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engels JMM, Rao VR (1998) Regeneration of seed crops and their wild relatives. In: Proceedings of a consultation meeting, 4–7 December 1995, ICRISAT, Hyderabad, India. IPGRI, Rome

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford-Lloyd BV, Schmidt M, Armstrong J et al. (2011) Crop wild relatives–undervalued, underutilized and under threat? Bioscience 61:559–565

    Article  Google Scholar 

  • Fox SL, Brown PD, Chong J (1997) Inheritance of crown rust resistance in four accessions of Avena sterilis L. Crop Sci 37:342–345

    Article  Google Scholar 

  • Frey KJ (1991) Genetic resources of oats. In: Shands HL, Wiesner L (eds) Use of plant introduction in cultivar development. Crop Science Society of America Special Publication, Madison, pp 15–24

    Google Scholar 

  • Fu YB (2014) Genetic diversity analysis of highly incomplete SNP genotype data with imputations: an empirical assessment. G3 (Bethesda) 4:891–900

    Article  Google Scholar 

  • Fu YB, Peterson GW (2011) Genetic diversity analysis with 454 pyrosequencing and genomic reduction confirmed the eastern and western division in the cultivated barley gene pool. Plant Genome 4:226–237

    Article  CAS  Google Scholar 

  • Fu YB, Peterson GW (2012) Developing genomic resources in two Linum species via 454 pyrosequencing and genomic reduction. Mol Ecol Resour 12:492–500

    Article  CAS  PubMed  Google Scholar 

  • Fu YB, Yang M-H (2017) Genotyping-by-sequencing and its application to oat genomic research. In: Gasparis S (ed) Oat—methods and protocols. Springer, New York, pp 169–187

    Google Scholar 

  • Fu YB, Chong J, Fetch T, Wang ML (2007) Microsatellite variation in Avena sterilis oat germplasm. Theor Appl Genet 114:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Fu YB, Cheng B, Peterson GW (2014) Genetic diversity analysis of yellow mustard germplasm based on genotyping by sequencing. Genet Resour Crop Evol 61:579–594

    Article  CAS  Google Scholar 

  • Fu YB, Peterson GW, Dong Y (2016) Increasing genome sampling and improving SNP genotyping for genotyping-by-sequencing with new combinations of restriction enzymes. G3 (Bethesda)(6):845–856

    Google Scholar 

  • Glover NA, Redestig H, Dessimoz C (2016) Homeologs: what are the and how do we infer them? Trends Plant Sci 21:609–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene SL, Warburton ML (2017) Wading into the gene pool: progress and constraints using wild species. Crop Sci 57:1039–1041

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Harder DE, Chong J, Brown PD, Martens JW (1990) Inheritance of resistance to Puccinia coronata avenae and P. graminis avenae in an accession of Avena sterilis from Spain. Genome 33:198–202

    Article  Google Scholar 

  • Harder DE, Chong J, Brown PD, Sebesta J, Fox S (1992) A. sterilis as a source of disease resistance: history, utilization, and prospects. In: Proceedings of the 4th international oat conference. A. sterilis in World Agriculture. Adelaide, Australia, vol 2, pp 71–81

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A et al (2009) High throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YF, Poland JA, Wight CP, Jackson EW, Tinker NA (2014) Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS ONE 9:e102448

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Bhattarai S, Peterson GW, Coulman B, Schellenberg MP, Biligetu B, Fu YB (2018) Genetic diversity of northern wheatgrass (Elymus lanceolatus ssp. lanceolatus) as revealed by genotyping-by-sequencing. Diversity 10:23

    Article  Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH et al (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Maxted N, Kell SP, Ford-Lloyd BV, Dulloo E, Irinodo J (2008) Crop wild relative conservation and use. CABI, Wallingford

    Google Scholar 

  • Nevo E, Fu YB, Pavlicek T, Khalifa S, Tavasi M, Beiles A (2012) Evolution of wild cereals during 28 years of global warming in Israel. Proc Natl Acad Sci USA 109:3412–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12:443–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peterson B, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson GW, Dong YB, Horbach C, Fu YB (2014) Genotyping-by-sequencing for plant genetic diversity analysis: a lab guide for SNP genotyping. Diversity 6:665–680

    Article  CAS  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard J, Stephens M, Donnelly P (2000) Influence of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.r-project.org/

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoen DJ, Brown AHD (2001) The conservation of wild plant species in seed banks. Bioscience 51:960–966

    Article  Google Scholar 

  • Somody CN, Nalewaja JD, Miller SD (1984) A. sterilis (Avena fatua and Avena sterilis) morphological characteristics and response to herbicides. Weed Sci 32:353–359

    CAS  Google Scholar 

  • Swofford DL (1998) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Takeda K, Frey KJ (1977) Growth rate inheritance and association with other traits in backcross populations of Avena sativa × A. sterilis. Euphytica 26:309–317

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thuiller T, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinker NA, Bekele WA, Hattori J (2016) Haplotag: software for haplotype-based genotyping-bysequencing analysis. G3 (Bethesda) 6:857–863

    Article  CAS  Google Scholar 

  • Vincent H, Wiersema J, Kell S, Fielder H, Dobbie S, Castañeda-Álvarez NP et al (2013) A prioritized crop wild relative inventory to help underpin global food security. Biol Conserv 167:265–275

    Article  Google Scholar 

  • Walters C (2015) Genebanking seeds from natural populations. Nat Areas J 35:98–105

    Article  Google Scholar 

  • Weider LJ, Jeyasingh PD, Frisch D (2018) Evolutionary aspects of resurrection ecology: progress, scope, and applications: an overview. Evol Appl 11:3–10

    Article  PubMed  Google Scholar 

  • Weir BS, Hill WG (2002) Estimating F-statistics. Annu Rev Genet 36:721–750

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Bekele WA, Wight CP et al (2016) High-density markers profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat. Theor Appl Genet 129:21332149

    Article  Google Scholar 

  • Yang M-H, Fu YB (2017) AveDissR: an R function for assessing genetic distinctness and genetic redundancy. Appl Plant Sci 5:1700018

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank NARC team for their assistance in this research: Israa Al-Hasanat, Abd-Alnaser Mousa, and Ziad Tahabsom and Kalid Abu Lila from biodiversity and medicinal plant department, and Safa Mazahreh and Doaa Abu-Hamoor from GIS Unit from NARC. We also are grateful to the technical assistance of Dallas Kessler and Axel Diederichsen in acquisition and identification of the wild oat collections and of Murari Singh in diversity analysis, and the useful comments raised by two anonymous journal reviewers on the early version of the manuscript. This research was partly funded by Agriculture and Agri-Food Canada A-base Program to YB Fu.

Author information

Authors and Affiliations

Authors

Contributions

YBF and NA conceived the collaborative research. YBF designed the project. NA collected the germplasm in Jordan. GWP and CH conducted the GBS analysis. YBF, GWP and NAT conducted the GBS data analysis and genetic diversity analysis. KA contributed to the genetic diversity analysis. YBF and NA wrote the paper. All authors contributed to and approved the manuscript.

Corresponding authors

Correspondence to Nawal Al-Hajaj or Yong-Bi Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiment complies with the current laws of Jordan and Canada in which it was performed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hajaj, N., Peterson, G.W., Horbach, C. et al. Genotyping-by-sequencing empowered genetic diversity analysis of Jordanian oat wild relative Avena sterilis. Genet Resour Crop Evol 65, 2069–2082 (2018). https://doi.org/10.1007/s10722-018-0674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-018-0674-x

Keywords

Navigation