Skip to main content
Log in

Boundedness for a 3D chemotaxis–Stokes system with porous medium diffusion and tensor-valued chemotactic sensitivity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with the following chemotaxis–Stokes system

$$\begin{aligned} \left\{ \begin{array}{ll} n_t+u\cdot \nabla n=\Delta n^m-\nabla \cdot (nS(x,n,c)\cdot \nabla c), &{}\quad x\in \Omega ,\,\, t>0,\\ c_t+u\cdot \nabla c=\Delta c-nf(c),&{}\quad x\in \Omega , \,\,t>0,\\ u_t=\Delta u+\nabla P+n\nabla \phi ,&{}\quad x\in \Omega , \,\,t>0,\\ \nabla \cdot u=0,&{}\quad x\in \Omega , \,\,t>0\\ \end{array} \right. \end{aligned}$$

under no-flux boundary conditions in a bounded domain \(\Omega \subset \mathbb {R}^{3}\) with smooth boundary, where \(m\ge 1\), \(\phi \in W^{1,\infty }(\Omega )\), f and S are given functions with values in \([0,\,\infty )\) and \(\mathbb {R}^{3\times 3}\), respectively. Here S satisfies \(|S(x,n,c)|<S_0(c)(1+n)^{-\alpha }\) with \(\alpha \ge 0\) and some nonnegative nondecreasing function \(S_0\). With the tensor-valued sensitivity S, this system does not possess energy-type functionals which seem to be available only when S is a scalar function. We can establish a priori estimation to overcome this difficulty and explore a relationship between m and \(\alpha \), i.e., \(m+\alpha >\frac{7}{6}\), which insures the global existence of bounded weak solution. Our result covers completely and improves the recent result by Wang and Cao (Discrete Contin Dyn Syst Ser B 20:3235–3254, 2015) which asserts, just in the case \(m=1\), the global existence of solutions, but without boundedness, and that by Winkler (Calc Var Partial Differ Equ 54:3789–3828, 2015) which only involves the case of \(\alpha =0\) and requires the convexity of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Towards a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, X., Ishida, S.: Global-in-time bounded weak solutions to a degenerate quasilinear Keller–Segel system with rotation. Nonlinearity 27, 1899–1913 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252, 5832–5851 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equ. 258, 2080–2113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chae, M., Kang, K., Lee, J.: Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete Contin. Dyn. Syst. Ser. A 33, 2271–2297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chae, M., Kang, K., Lee, J.: Global Existence and temporal decay in Keller–Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39, 1205–1235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duan, R., Lorz, A., Markowich, P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duan, R., Xiang, Z.: A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion. Int. Math. Res. Not. 2014, 1833–1852 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Di Francesco, M., Lorz, A., Markowich, P.A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. Ser. A 28, 1437–1453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103-1–4 (2004)

    Article  Google Scholar 

  11. Ishida, S.: Global existence and boundedness for chemotaxis-Navier–Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete Contin. Dyn. Syst. Ser. A 35, 3463–3482 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, K., Mu, C., Gao, Y.: Boundedness and blow up in the higher-dimensional attraction–repulsion chemotaxis system with nonlinear diffusion. J. Differ. Equ. 261, 4524–4572 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, X., Xiang, Z.: On an attraction–repulsion chemotaxis system with a logistic source. IMA J. Appl. Math. 81, 165–198 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Li, T., Suen, A., Winkler, M., Xue, C.: Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms. Math. Models Methods Appl. Sci. 25, 721–746 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, J., Lorz, A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. Henri Poincaré Anal. Non Linéaire 28, 643–652 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lorz, A.: Coupled chemotaxis fluid equations. Math. Models Methods Appl. Sci. 20, 987–1004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Painter, K., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–543 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Sohr, H.: The Navier–Stokes Equations: An Elementary Functional Analytic Approach. Birkhǎuser, Basel (2001)

    Book  MATH  Google Scholar 

  20. Tao, Y., Winkler, M.: A chemotaxis–haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal. 43, 685–704 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. Henri Poincaré Anal. Non Linéaire 30, 157–178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tao, Y., Winkler, M.: Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. Ser. A 32, 1901–1914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tao, Y., Winkler, M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252, 2520–2543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. Studied in Mathematics and its Applications, vol. 2. North-holland, Amsterdam (1977)

    Google Scholar 

  26. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  MATH  Google Scholar 

  27. Velázquez, J.J.: Point dynamics in a singular limit of the Keller–Segel model 1: motion of the concentration regions. SIAM J. Appl. Math. 64, 1198–1223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Y.: Global bounded weak solutions to a degenerate quasilinear chemotaxis system with rotation. Math. Methods Appl. Sci. 39, 1159–1175 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Y.: A quasilinear attraction–repulsion chemotaxis system of parabolic–elliptic type with logistic source. J. Math. Anal. Appl. 441, 259–292 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Y., Cao, X.: Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete Contin. Dyn. Syst. Ser. B 20, 3235–3254 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, Y., Xiang, Z.: Global existence and boundedness in a higher-dimensional quasilinear chemotaxis system. Z. Angew. Math. Phys. 66, 3159–3179 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Y.: Global existence and boundedness in a quasilinear attraction–repulsion chemotaxis system of parabolic–elliptic type. Bound. Value Probl. 2016, 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  33. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33, 1329–1352 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47, 3092–3115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Partial Differ. Equ. 54, 3789–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Winkler, M.: A two-dimensional chemotaxis-Stokes system with rotational flux: global solvability, eventual smoothness and stabilization, preprint

  39. Winkler, M.: Does a “volume-filling” effect always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Xue, C.: Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J. Math. Biol. 70, 1–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70, 133–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemotaxis-Navier–Stokes equations. SIAM J. Math. Anal. 46, 3078–3105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xie Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, X. Boundedness for a 3D chemotaxis–Stokes system with porous medium diffusion and tensor-valued chemotactic sensitivity. Z. Angew. Math. Phys. 68, 29 (2017). https://doi.org/10.1007/s00033-017-0773-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0773-0

Mathematics Subject Classification

Keywords

Navigation