Skip to main content
Log in

Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Chemotaxis of single cells has been extensively studied and a great deal on intracellular signaling and cell movement is known. However, systematic methods to embed such information into continuum PDE models for cell population dynamics are still in their infancy. In this paper, we consider chemotaxis of run-and-tumble bacteria and derive continuum models that take into account of the detailed biochemistry of intracellular signaling. We analytically show that the macroscopic bacterial density can be approximated by the Patlak–Keller–Segel equation in response to signals that change slowly in space and time. We derive, for the first time, general formulas that represent the chemotactic sensitivity in terms of detailed descriptions of single-cell signaling dynamics in arbitrary space dimensions. These general formulas are useful in explaining relations of single cell behavior and population dynamics. As an example, we apply the theory to chemotaxis of bacterium Escherichia coli and show how the structure and kinetics of the intracellular signaling network determine the sensing properties of E. coli  populations. Numerical comparison of the derived PDEs and the underlying cell-based models show quantitative agreements for signals that change slowly, and qualitative agreements for signals that change extremely fast. The general theory we develop here is readily applicable to chemotaxis of other run-and-tumble bacteria, or collective behavior of other individuals that move using a similar strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. An exception is the reaction rate for the dissociation of the complex CheYp-CheZ. We take it to be \(8.45 \,\hbox {s}^{-1}\) instead of \(10 \, \hbox {s}^{-1}\) as in Table 1 of Xin and Othmer (2012). This change was necessary to reproduce the numerical results in Xin and Othmer (2012). Personal communications reveal that this discrepancy was due to a typo of Xin and Othmer (2012).

References

  • Adler J (1966) Chemotaxis in bacteria. Science 153:708–716

    Article  Google Scholar 

  • Armitage JP, Pitta TP, Vigeant MA, Packer HL, Ford RM (1999) Transformations in flagellar structure of Rhodobacter sphaeroides and possible relationship to changes in swimming speed. J Bacteriol 181(16):4825–4833

    Google Scholar 

  • Aminzare Z, Sontag ED (2013) Remarks on a population-level model of chemotaxis: advection-diffusion approximation and simulations. arXiv:1302.2605 (preprint)

  • Berg HC (1975) How bacteria swim. Sci Am 233:36–44

    Article  Google Scholar 

  • Berg HC (1983) Random walks in biology. Princeton University Press, Princeton

    Google Scholar 

  • Berg HC (2000) Motile behavior of bacteria. Phys Today 53(1):24–29

    Article  Google Scholar 

  • Berg HC, Brown D (1972) Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Nature 239:502–507

    Article  Google Scholar 

  • Bray D, Levin MD, Lipkow K (2007) The chemotactic behavior of computer-based surrogate bacteria. Curr Biol 17(1):12–19

    Article  Google Scholar 

  • Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ, Crane BR (2012) Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc Natl Acad Sci USA 109(10):3766–3771

    Article  Google Scholar 

  • Budrene EO, Berg HC (1991) Complex patterns formed by motile cells of Escherichia coli. Nature 349(6310):630–633

    Article  Google Scholar 

  • Budrene EO, Berg HC (1995) Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376(6535):49–53

    Article  Google Scholar 

  • Butler SM, Camilli A (2004) Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc Natl Acad Sci USA 101(14):5018–5023. doi:10.1073/pnas.0308052101

    Article  Google Scholar 

  • Chen KC, Cummings PT, Ford RM (1998) Perturbation expansion of alt’s cell balance equations reduces to Segel’s one-dimensional equations for shallow chemoattractant gradients. SIAM J Appl Math 59(1):35–57

    Article  MathSciNet  Google Scholar 

  • Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287:1652–1655

    Article  Google Scholar 

  • Dallon JC, Othmer HG (1997) A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Philos Trans R Soc Lond B Biol Sci 352(1351):391–417

    Article  Google Scholar 

  • Duffy KJ, Ford RM (1997) Turn angle and run time distributions characterize swimming behavior for Pseudomonas putida. J Bacteriol 179(4):1428–1430

    Google Scholar 

  • Erban R, Othmer HG (2004) From individual to collective behavior in bacterial chemotaxis. SIAM J Appl Math 65(2):361–391

    Article  MathSciNet  MATH  Google Scholar 

  • Erban R, Othmer H (2005) From signal transduction to spatial pattern formation in E. coli: a paradigm for multiscale modeling in biology. Multiscale Model Simul 3(2):362–394

    Google Scholar 

  • Franz B, Erban R (2013) Hybrid modelling of individual movement and collective behaviour. In: Dispersal, individual movement and spatial ecology. Springer, Berlin, pp 129–157

  • Franz B, Xue C, Painter K, Erban R (2013) Travelling waves in hybrid chemotaxis models. Bull Math Biol. doi:10.1007/s11538-013-9924-4

  • Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457. doi:10.1038/nrm2720

    Article  Google Scholar 

  • Gyrya V, Aranson IS, Berlyand LV, Karpeev D (2010) A model of hydrodynamic interaction between swimming bacteria. Bull Math Biol 72(1):148–183. doi:10.1007/s11538-009-9442-6

    Article  MathSciNet  MATH  Google Scholar 

  • Hazelbauer GL (2012) Bacterial chemotaxis: the early years of molecular studies. Annu Rev Microbiol 66:285–303. doi:10.1146/annurev-micro-092611-150120

    Article  Google Scholar 

  • Hillen T, Othmer HG (2000) The diffusion limit of transport equations derived from velocity-jump processes. SIAM J Appl Math 61(3):751–775

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1–2):183–217. doi:10.1007/s00285-008-0201-3

    Article  MathSciNet  MATH  Google Scholar 

  • Hilpert M (2005) Lattice–Boltzmann model for bacterial chemotaxis. J Math Biol 51(3):302–332

    Article  MathSciNet  MATH  Google Scholar 

  • Horstmann D (2003) From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. Jahresbericht der DMV 105(3):103–165

    MathSciNet  MATH  Google Scholar 

  • Hugdahl MB, Beery JT, Doyle MP (1988) Chemotactic behavior of Campylobacter jejuni. Infect Immun 56(6):1560–1566

    Google Scholar 

  • Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44(1):1–8. doi:10.1016/j.cyto.2008.06.017

    Article  Google Scholar 

  • Kalinin YV, Jiang L, Tu Y, Wu M (2009) Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys J 96(6):2439–2448. doi:10.1016/j.bpj.2008.10.027

    Article  Google Scholar 

  • Kaya T, Koser H (2012) Direct upstream motility in Escherichia coli. Biophys J 102(7):1514–1523. doi:10.1016/j.bpj.2012.03.001

    Article  Google Scholar 

  • Keller EF, Segel LA (1970) Initiation of slime mold aggregation viewed as an instability. J Theor Biol 26:399–415

    Article  MATH  Google Scholar 

  • Keller EF, Segel LA (1971a) Model for chemotaxis. J Theor Biol 30:225–234

    Article  MATH  Google Scholar 

  • Keller EF, Segel LA (1971b) Traveling bands of chemotactic bacteria: a theoretical analysis. J Theor Biol 30:235–248

    Article  MATH  Google Scholar 

  • Kim Y, Stolarska MA, Othmer HG (2011) The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol 106(2):353–379. doi:10.1016/j.pbiomolbio.2011.06.006

    Article  Google Scholar 

  • Kojadinovic M, Armitage JP, Tindall MJ, Wadhams GH (2013) Response kinetics in the complex chemotaxis signalling pathway of Rhodobacter sphaeroides. J R Soc Interface 10(81):20121001. doi:10.1098/rsif.2012.1001

    Google Scholar 

  • Koshland DE (1980) Bacterial chemotaxis as a model behavioral system. Raven Press, New York

    Google Scholar 

  • Liu J, Hu B, Morado DR, Jani S, Manson MD, Margolin W (2012) Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc Natl Acad Sci USA 109(23):E1481–E1488. doi:10.1073/pnas.1200781109

    Article  Google Scholar 

  • Long W, Hilpert M (2008) Lattice–Boltzmann modeling of contaminant degradation by chemotactic bacteria: exploring the formation and movement of bacterial bands. Water Resour Res 44(9):W09415

    Google Scholar 

  • Marcos M, Fu HC, Powers TR, Stocker R (2012) Bacterial rheotaxis. Proc Natl Acad Sci USA 109(13):4780–4785. doi:10.1073/pnas.1120955109

    Article  Google Scholar 

  • Marx RB, Aitken MD (2000) A material-balance approach for modeling bacterial chemotaxis to a consumable substrate in the capillary assay. Biotechnol Bioeng 68(3):308–315

    Article  Google Scholar 

  • Nicolau JDVV, Armitage JP, Maini PK (2009) Directional persistence and the optimality of run-and-tumble chemotaxis. Comput Biol Chem 33(4):269–274. doi:10.1016/j.compbiolchem.2009.06.003

    Article  MathSciNet  Google Scholar 

  • Othmer HG, Hillen T (2002) The diffusion limit of transport equations II: chemotaxis equations. SIAM J Appl Math 62:1222–1250

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer H, Xue C (2013) The mathematical analysis of biological aggregation and dispersal: progress, problems and perspectives. In: Lewis M, Maini P, Petrovskii S (eds) Dispersal, individual movement and spatial ecology: a mathematical perspective. Springer, Berlin

  • Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26(3):263–298

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer HG, Painter KJ, Umulis D, Xue C (2009) The intersection of theory and application in elucidating pattern formation in developmental biology. Math Model Nat Phenom 4(4):3–82

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer HG, Xin X, Xue C (2013) Excitation and adaptation in bacteria-a model signal transduction system that controls taxis and spatial pattern formation. Int J Mol Sci 14(5):9205–9248

    Article  Google Scholar 

  • O’Toole R, Lundberg S, Fredriksson SA, Jansson A, Nilsson B, Wolf-Watz H (1999) The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J Bacteriol 181(14):4308–4317

    Google Scholar 

  • Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68(12):5789–5795

    Article  Google Scholar 

  • Papanicolaou GC (1975) Asymptotic analysis of transport processes. Bull Am Math Soc 81(2):330–393

    Article  MathSciNet  MATH  Google Scholar 

  • Patlak CS (1953) Random walk with persistence and external bias. Bull Math Biophys 15:311–338

    Article  MathSciNet  MATH  Google Scholar 

  • Pittman MS, Goodwin M, Kelly DJ (2001) Chemotaxis in the human gastric pathogen Helicobacter pylori: different roles for chew and the three chev paralogues, and evidence for chev2 phosphorylation. Microbiology 147(Pt 9):2493–2504

    Google Scholar 

  • Porter SL, Wadhams GH, Armitage JP (2008) Rhodobacter sphaeroides: complexity in chemotactic signalling. Trends Microbiol 16(6):251–260. doi:10.1016/j.tim.2008.02.006

    Article  Google Scholar 

  • Potomkin M, Gyrya V, Aranson I, Berlyand L (2013) Collision of microswimmers in a viscous fluid. Phys Rev E Stat Nonlin Soft Matter Phys 87(5–1):053005

    Google Scholar 

  • Rao CV, Kirby JR, Arkin AP (2004) Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol 2(2):E49. doi:10.1371/journal.pbio.0020049

    Article  Google Scholar 

  • Rao CV, Glekas GD, Ordal GW (2008) The three adaptation systems of Bacillus subtilis chemotaxis. Trends Microbiol 16(10):480–487. doi:10.1016/j.tim.2008.07.003

    Article  Google Scholar 

  • Rivero MA, Tranquillo RT, Buettner HM, Lauffenburger DA (1989) Transport models for chemotactic cell populations based on individual cell behavior. Chem Eng Sci 44(12):2881–2897

    Article  Google Scholar 

  • Ryan SD, Haines BM, Berlyand L, Ziebert F, Aranson IS (2011) Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise. Phys Rev E Stat Nonlin Soft Matter Phys 82(5 Pt 1):050904

    Google Scholar 

  • Saragosti J, Calvez V, Bournaveas N, Perthame B, Buguin A, Silberzan P (2011) Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc Natl Acad Sci USA 108(39):16235–16240

    Article  Google Scholar 

  • Simons JE, Milewski PA (2011) The volcano effect in bacterial chemotaxis. Math Comput Model 53(7–8):1374–1388

    Article  MathSciNet  MATH  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397. doi:10.1016/j.tim.2006.07.001

    Article  Google Scholar 

  • Sze CW, Zhang K, Kariu T, Pal U, Li C (2012) Borrelia burgdorferi needs chemotaxis to establish infection in mammals and to accomplish its enzootic cycle. Infect Immun 80(7):2485–2492. doi:10.1128/IAI.00145-12

    Article  Google Scholar 

  • Tindall MJ, Maini PK, Porter SL, Armitage JP (2008a) Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bull Math Biol 70(6):1570–1607. doi:10.1007/s11538-008-9322-5

    Article  MathSciNet  MATH  Google Scholar 

  • Tindall MJ, Porter SL, Maini PK, Gaglia G, Armitage JP (2008b) Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell. Bull Math Biol 70(6):1525–1569. doi:10.1007/s11538-008-9321-6

    Article  MathSciNet  MATH  Google Scholar 

  • Tu Y (2013) Quantitative modeling of bacterial chemotaxis: Signal amplification and accurate adaptation. Annu Rev Biophys. doi:10.1146/annurev-biophys-083012-130358

  • Tu Y, Shimizu TS, Berg HC (2008) Modeling the chemotactic response of Escherichia coli to time-varying stimuli. Proc Natl Acad Sci USA 105(39):14855–14860. doi:10.1073/pnas.0807569105

    Article  Google Scholar 

  • Tyson R, Lubkin SR, Murray JD (1999a) A minimal mechanism for bacterial pattern formation. Proc R Soc Lond B 266:299–304

    Article  Google Scholar 

  • Tyson R, Lubkin SR, Murray JD (1999b) Model and analysis of chemotactic bacterial patterns in a liquid medium. J Math Biol 38:359–375

    Article  MathSciNet  MATH  Google Scholar 

  • Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221–231

    Article  Google Scholar 

  • Wang ZA (2013) Mathematics of traveling waves in chemotaxis. DCDS-B 18:601–641

    Article  Google Scholar 

  • Williams SM, Chen YT, Andermann TM, Carter JE, McGee DJ, Ottemann KM (2007) Helicobacter pylori chemotaxis modulates inflammation and bacterium-gastric epithelium interactions in infected mice. Infect Immun 75(8):3747–3757. doi:10.1128/IAI.00082-07

    Article  Google Scholar 

  • Woodward D, Tyson R, Myerscough M, Murray J, Budrene E, Berg H (1995) Spatio-temporal patterns generated by Salmonella typhimurium. Biophys J 68:2181–2189

    Article  Google Scholar 

  • Xin X (2010) Mathematical models of bacterial chemotaxis. Ph.D. thesis, University of Minnesota

  • Xin X, Othmer HG (2012) A “trimer of dimers”-based model for the chemotactic signal transduction network in bacterial chemotaxis. Bull Math Biol 74(10):2339–2382. doi:10.1007/s11538-012-9756-7

    Article  MathSciNet  MATH  Google Scholar 

  • Xue C, Othmer HG (2009) Multiscale models of taxis-driven patterning in bacterial populations. SIAM J Appl Math 70(1):133–167

    Article  MathSciNet  MATH  Google Scholar 

  • Xue C, Othmer HG, Erban R (2009) From individual to collective behavior of unicellular organisms: recent results and open problems. In: Multiscale phenomena in biology: proceedings of the 2nd conference on mathematics and biology. AIP conference proceedings, vol 1167(1), pp 3–14

  • Xue C, Budrene EO, Othmer HG (2011), Radial and spiral stream formation in Proteus mirabilis colonies. PLoS Comput Biol 7(12):e1002332

    Google Scholar 

  • Zhu X, Si G, Deng N, Ouyang Q, Wu T, He Z, Jiang L, Luo C, Tu Y (2012) Frequency-dependent Escherichia coli chemotaxis behavior. Phys Rev Lett 108(12):128101

    Article  Google Scholar 

Download references

Acknowledgments

CX would like to thank Professor Hans Othmer and Dr. Radek Erban for insightful discussions and comments on the paper. CX would like to dedicate this paper to Professor Hans G. Othmer’s 70th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Xue.

Additional information

CX is supported by the National Science Foundation in the United States through grant DMS-1312966. CX is also supported by the Mathematical Biosciences Institute at the Ohio State University as a long-term visitor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, C. Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J. Math. Biol. 70, 1–44 (2015). https://doi.org/10.1007/s00285-013-0748-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-013-0748-5

Keywords

Mathematics Subject Classification (2000)

Navigation