Skip to main content
Log in

Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the chemotaxis-fluid system

(0.1)

in a bounded convex domain \(\Omega \subset {\mathbb {R}}^3\) with smooth boundary, where \(\phi \in W^{1,\infty }(\Omega )\) and Df and S are given functions with values in \([0,\infty ), [0,\infty )\) and \({\mathbb {R}}^{3\times 3}\), respectively. In the existing literature, the derivation of results on global existence and qualitative behavior essentially relies on the use of energy-type functionals which seem to be available only in special situations, necessarily requiring the matrix-valued S to actually reduce to a scalar function of c which, along with f, in addition should satisfy certain quite restrictive structural conditions. The present work presents a novel a priori estimation method which allows for removing any such additional hypothesis: besides appropriate smoothness assumptions, in this paper it is only required that f is locally bounded in \([0,\infty )\), that S is bounded in \(\Omega \times [0,\infty )^2\), and that \(D(n)\ge k_{D}n^{m-1}\) for all \(n\ge 0\) with some \(k_{D}>0\) and some

$$\begin{aligned} m>\frac{7}{6}. \end{aligned}$$

It is shown that then for all reasonably regular initial data, a corresponding initial-boundary value problem for (0.1) possesses a globally defined weak solution. The method introduced here is efficient enough to moreover provide global boundedness of all solutions thereby obtained in that, inter alia, \(n\in L^\infty (\Omega \times (0,\infty ))\). Building on this boundedness property, it can finally even be proved that in the large time limit, any such solution approaches the spatially homogeneous equilibrium \((\overline{n_0},0,0)\) in an appropriate sense, where \(\overline{n_0}:=\frac{1}{|\Omega |} \int _{\Omega }n_0\), provided that merely \(n_0\not \equiv 0\) and \(f>0\) on \((0,\infty )\). To the best of our knowledge, these are the first results on boundedness and asymptotics of large-data solutions in a three-dimensional chemotaxis-fluid system of type (0.1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, X., Ishida, S.: Global-in-time bounded weak solutions to a degenerate quasilinear Keller–Segel system with rotation. Nonlinearity 27, 1899–1913 (2014)

  2. Cao, X., Wang, Y.: Global solutions of a 3D chemotaxis-Stokes system with rotation. Discret Contin. Dyn. Syst. Ser. B 20(9), 3235–3254 (2015)

    Article  Google Scholar 

  3. Chae, M., Kang, K., Lee, J.: Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete Contin. Dyn. Syst. A 33(6), 2271–2297 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. DiFrancesco, M., Lorz, A., Markowich, P.A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. A 28, 1437–1453 (2010)

    Article  MathSciNet  Google Scholar 

  5. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103-1–098103-4 (2004)

    Article  Google Scholar 

  6. Duan, R.J., Lorz, A., Markowich, P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duan, R., Xiang, Z.: A note on global existence for the chemotaxisStokes model with nonlinear diffusion. Int. Math. Res. Not. (2012). doi:10.1093/imrn/rns270 (rns270, 20 pages)

  8. Friedman, A.: Partial Differential Equations. Holt, Rinehart & Winston, New York (1969)

    MATH  Google Scholar 

  9. Giga, Y.: The Stokes operator in \(L_r\) spaces. Proc. Jpn. Acad. Ser. 2, 85–89 (1981)

    Article  MathSciNet  Google Scholar 

  10. Giga, Y.: Solutions for semilinear parabolic equations in \(L_p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Giga, Y., Sohr, H.: Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin, Heidelberg, New York (1981)

    Google Scholar 

  13. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215(1), 52–107 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and enhancement of biological reactions. Commun. Partial Differ. Equ. 37(1–3), 298–318 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case. J. Math. Phys. 53(11), 115609 (2012). (9 p.)

    Article  MathSciNet  Google Scholar 

  16. Kozono, H., Miura, M., Sugiyama, Y.: Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid (preprint)

  17. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type, vol. 23. American Mathematical Society Translation, Providence (1968)

    Google Scholar 

  18. Li, T., Suen, A., Xue, C., Winkler, M.: Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms. Math. Mod. Meth. Appl. Sci. 25, 721–746 (2015)

    Article  MathSciNet  Google Scholar 

  19. Lions, P.L.: Résolution de problèmes elliptiques quasilinéaires. Arch. Rat. Mech. Anal. 74, 335–353 (1980)

    Article  MATH  Google Scholar 

  20. Liu, J.-G., Lorz, A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. Henri Poincaré Anal. Non Linéaire 28(5), 643–652 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lorz, A.: Coupled chemotaxis fluid model. Math. Mod. Meth. Appl. Sci. 20, 987–1004 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Porzio, M.M., Vespri, V.: Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equ. 103(1), 146–178 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Quittner, P., Souplet, P.H.: Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States. Birkhäuser Advanced Texts, Basel, Boston, Berlin (2007)

    MATH  Google Scholar 

  24. Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  25. Tao, Y., Winkler, M.: A chemotaxis–haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal. 43, 685–704 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tao, Y., Winkler, M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252, 2520–2543 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tao, Y., Winkler, M.: Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. A 32(5), 1901–1914 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. Henri Poincaré Anal. Non Linéaire 30(1), 157–178 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and its Applications, vol. 2. North-Holland, Amsterdam (1977)

    Google Scholar 

  31. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  MATH  Google Scholar 

  32. Vorotnikov, D.: Weak solutions for a bioconvection model related to Bacillus subtilis. Commun. Math. Sci. 12, 545–563 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  33. Winkler, M.: A critical exponent in a degenerate parabolic equation. Math. Methods Appl. Sci. 25(11), 911–925 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MATH  Google Scholar 

  35. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MATH  Google Scholar 

  36. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211(2), 455–487 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  37. Winkler, M: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. Henri Poincaré Anal. Non Linéaire. http://dx.doi.org/10.1016/j.anihpc.2015.05.002

  38. Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier–Stokes system? Trans. Amer. Math. Soc. (to appear)

  39. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities SIAM J. Math. Anal. 47, 3092–3115 (2015)

  40. Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70, 133–167 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhang, Q., Li, Y.: Decay rates of solutions for a two-dimensional chemotaxis-Navier–Stokes system. J. Math. Anal. Appl. (to appear)

Download references

Acknowledgments

The author would like to thank the anonymous reviewer for numerous helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winkler.

Additional information

Communicated by Y. Giga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, M. Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. 54, 3789–3828 (2015). https://doi.org/10.1007/s00526-015-0922-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0922-2

Mathematics Subject Classification

Navigation