Skip to main content
Log in

Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In a bounded domain \(\Omega \subset \mathbb {R}^2\), we consider the the chemotaxis-Stokes system

$$\begin{aligned} \left\{ \begin{array}{ll} n_t + u\cdot \nabla n = \Delta n - \nabla \cdot \Big (nS(x,n,c) \cdot \nabla c \Big ), \qquad &{} x\in \Omega , \ t>0,\\ c_t + u\cdot \nabla c = \Delta c - nf(c), \qquad &{} x\in \Omega , \ t>0,\\ u_t = \Delta u + \nabla P + n\nabla \phi , \qquad \nabla \cdot u=0, \qquad &{} x\in \Omega , \ t>0, \end{array} \right. \qquad \qquad (\star ) \end{aligned}$$

which arises as a model for populations of aerobic bacteria swimming in a sessile water drop. In accordance with refined modeling approaches, we do not necessarily assume the chemotactic sensitivity S herein to be a scalar function, but rather allow S to attain values in \(\mathbb {R}^{2\times 2}\). As compared to the well-studied case of scalar-valued sensitivities in which an analysis can be based on favorable energy-type inequalities, this modification brings about significant new challenges which require to adequately cope with only little a priori information on regularity of solutions of (\(\star \)). The present work creates a functional setup which despite this allows for the construction of certain global mass-preserving generalized solutions to an associated initial-boundary value problem in planar convex domains with smooth boundary, provided that the initial data and the parameter functions S, f and \(\phi \) are sufficiently smooth, and that S is bounded and f is nonnegative with \(f(0)=0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, X.: Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discr. Cont. Dyn. Syst. 35, 1891-1904 (2015)

    Article  MathSciNet  Google Scholar 

  2. Cao, X.: Global classical solutions in chemotaxis(-Navier)-Stokes system with rotational flux term. J. Differential Eq. 261, 6883-6914 (2016)

    Article  MathSciNet  Google Scholar 

  3. Cao, X., Ishida, S.: Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation. Nonlinearity 27, 1899-1913 (2014)

    Article  MathSciNet  Google Scholar 

  4. Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities. Calc. Var. Part. Differ. Eq. 55, paper No. 107, 39 pp. (2016)

  5. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller-Segel models coupled to fluid equations. Comm. Part. Differ. Eq. 39, 1205-1235 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chang, S.Y.A., Yang, P.C.: Conformal deformation of metrics on \(S^2\). J. Differential Geometry 27, 259-296 (1988)

    Article  MathSciNet  Google Scholar 

  7. DiFrancesco, M., Lorz, A., Markowich, P.A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discr. Cont. Dyn. Syst. A 28, 1437-1453 (2010)

    Article  MathSciNet  Google Scholar 

  8. Di Perna, R.-J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann. Math. 130, 321-366 (1989)

    Article  MathSciNet  Google Scholar 

  9. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103-1-4 (2004)

  10. Duan, R.J., Lorz, A., Markowich, P.A.: Global solutions to the coupled chemotaxis-fluid equations. Comm. Part. Differ. Eq. 35, 1635-1673 (2010)

    Article  MathSciNet  Google Scholar 

  11. Duan, R., Xiang, Z.: A Note on Global Existence for the ChemotaxisStokes Model with Nonlinear Diffusion. Int. Math. Res. Not. 7, 1833-1852 (2014)

    Article  Google Scholar 

  12. Giga, Y.: The Stokes operator in \(L_r\) spaces. Proc. Japan Acad. S. 2, 85-89 (1981)

    Article  Google Scholar 

  13. Giga, Y.: Solutions for Semilinear Parabolic Equations in \(L_p\) and Regularity of Weak Solutions of the Navier-Stokes System. J. Differential Equations 61, 186-212 (1986)

    Article  Google Scholar 

  14. Henry, D.: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics. 840. Springer, Berlin-Heidelberg-New York, 1981

    Book  Google Scholar 

  15. Herrero, M. A., Velázquez, J. J. L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Normale Superiore Pisa Cl. Sci. 24, 633-683 (1997)

  16. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183-217 (2009)

    Article  MathSciNet  Google Scholar 

  17. Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. European J. Appl. Math. 12, 159-177 (2001)

    Article  MathSciNet  Google Scholar 

  18. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differential Equations 215 (1), 52-107 (2005)

    Article  MathSciNet  Google Scholar 

  19. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and enhancement of biological reactions. Commun. Partial Differ. Equations 37 (1-3), 298-318 (2012)

    Article  MathSciNet  Google Scholar 

  20. Kozono, H., Miura, M., Sugiyama, Y.: Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid. J. Funct. Anal. 270, 1663-1683 (2016)

    Article  MathSciNet  Google Scholar 

  21. Lankeit, J.: Long-term behaviour in a chemotaxis-fluid system with logistic source. Math. Mod. Meth. Appl. Sci. 26, 2071-2109 (2016)

    Article  MathSciNet  Google Scholar 

  22. Li, T., Suen, A., Xue, C., Winkler, M.: Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms. Math. Models Methods Appl. Sci. 25, 721-746 (2015)

    Article  MathSciNet  Google Scholar 

  23. Liu, J.-G., Lorz, A.: A Coupled Chemotaxis-Fluid Model: Global Existence. Ann. Inst. 28 (5), 643-652 (2011)

    Article  MathSciNet  Google Scholar 

  24. Lorz, A.: Coupled chemotaxis fluid model. Math. Mod. Meth. Appl. Sci. 20, 987-1004 (2010)

    Article  MathSciNet  Google Scholar 

  25. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc.  Ekvacioj, Ser. Int. 40, 411-433 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Peng, Y., Xiang, Z.: Global existence and boundedness in a 3D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux. Z. Angew. Math. Phys. 68, Art. 68, 26 pp. (2017)

  27. Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel, 2001

    MATH  Google Scholar 

  28. Tao, Y., Winkler, M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equations 252, 2520-2543 (2012)

    Article  MathSciNet  Google Scholar 

  29. Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. 30 (1), 157-178 (2013)

    Article  MathSciNet  Google Scholar 

  30. Temam, R.: Navier-Stokes equations. Theory and numerical analysis. Studies in Mathematics and its Applications. Vol. 2. North-Holland, Amsterdam, 1977

  31. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Nat. Acad. Sci. USA 102, 2277-2282 (2005)

    Article  Google Scholar 

  32. Vorotnikov, D.: Weak solutions for a bioconvection model related to Bacillus subtilis. Commun. Math. Sci. 12, 545-563 (2014)

    Article  MathSciNet  Google Scholar 

  33. Wang, Y., Li, X.: Boundedness for a 3D chemotaxis-Stokes system with porous medium diffusion and tensor-valued chemotactic sensitivity. Z. Angew. Math. Phys. 68, no. 2, Art. 29, 23 pp. (2017)

  34. Wang, Y., Cao, X.: Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete Contin. Dyn. Syst. B 20, 3235–3254 (2015)

    Article  MathSciNet  Google Scholar 

  35. Wang, Y., Pang, F., Li, H.: Boundedness in a three-dimensional chemotaxis-Stokes system with tensor-valued sensitivity. Comput. Math. Appl. 71, 712-722 (2016)

    Article  MathSciNet  Google Scholar 

  36. Wang, Y., Xiang, Z.: Global existence and boundedness in a KellerSegelStokes system involving a tensor-valued sensitivity with saturation. J. Differential Eq. 259, 7578-7609 (2015)

    Article  Google Scholar 

  37. Wang, Y., Xiang, Z.: Global existence and boundedness in a KellerSegelStokes system involving a tensor-valued sensitivity with saturation: the 3D case. J. Differential Eq. 261, 4944-4973 (2016)

    Article  Google Scholar 

  38. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differential Equations 248, 2889-2905 (2010)

    Article  MathSciNet  Google Scholar 

  39. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Comm. Part. Differ. Equations 37, 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  40. Winkler, M: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100, 748-767 (2013), arXiv:1112.4156v1

    Article  MathSciNet  Google Scholar 

  41. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch. Ration. Mech. Anal. 211 (2), 455-487 (2014)

    Article  MathSciNet  Google Scholar 

  42. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47, 3092-3115 (2015)

    Article  MathSciNet  Google Scholar 

  43. Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Part. Differential Eq. 54, 3789-3828 (2015)

    Article  MathSciNet  Google Scholar 

  44. Winkler, M: Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann. Inst. 33, 1329-1352 (2016)

    Article  MathSciNet  Google Scholar 

  45. Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? Trans. Amer. Math. Soc. 369, 3067-3125 (2017)

    Article  MathSciNet  Google Scholar 

  46. Xue, C.: Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J. Math. Biol. 70, 1-44 (2015)

    Article  MathSciNet  Google Scholar 

  47. Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70, 133-167 (2009)

    Article  MathSciNet  Google Scholar 

  48. Zhang, Q., Li, Y.: Decay rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system. Discrete Cont. Dyn. Syst. B 20, 2751-2759 (2015)

    Article  Google Scholar 

  49. Zhang, Q., Li, Y.: Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion. J. Differential Eq. 259, 3730-3754 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Analysis of chemotactic cross-diffusion in complex frameworks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winkler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, M. Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components. J. Evol. Equ. 18, 1267–1289 (2018). https://doi.org/10.1007/s00028-018-0440-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-018-0440-8

Keywords

Mathematics Subject Classification

Navigation