Skip to main content
Log in

Global existence and boundedness of weak solutions to a chemotaxis–Stokes system with rotational flux term

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, the three-dimensional chemotaxis–Stokes system

$$\begin{aligned} \left\{ \begin{array}{ll} n_{t}+u\cdot \nabla n=\Delta n^m-\nabla \cdot (n S(x,n,c)\cdot \nabla c),&{}\quad x\in \Omega ,\ \ t>0,\\ c_t+u\cdot \nabla c=\Delta c-nf(c),&{}\quad x\in \Omega ,\ \ t>0,\\ u_t+\nabla P=\Delta u +n\nabla \phi ,&{}\quad x\in \Omega ,\ \ t>0,\\ \nabla \cdot u=0, &{}\quad x\in \Omega ,\ \ t>0, \end{array}\right. \end{aligned}$$

posed in a bounded domain \(\Omega \subset {\mathbb {R}}^3\) with smooth boundary is considered under the no-flux boundary condition for n, c and the Dirichlect boundary condition for u under the assumption that the Frobenius norm of the tensor-valued chemotactic sensitivity S(xnc) satisfies \(S(x,n,c)<n^{l-2}\widetilde{S}(c)\) with \(l>2\) for some non-decreasing function \(\widetilde{S}\in C^{2}([0,\infty ))\). In the present work, it is shown that the weak solution is global in time and bounded while \(m>m^\star (l)\), where

$$\begin{aligned} m^\star (l)= \left\{ \begin{array}{ll} l-\frac{5}{6},&{}\quad \mathrm {if}\ \ \frac{31}{12}\ge l>2,\\ \frac{7}{5}l-\frac{28}{15}, &{}\quad \mathrm {if}\ \ l>\frac{31}{12}. \end{array}\right. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calvez, V., Carrillo, J.A.: Volume effects in the Keller–Segel model: energy estimates preventing blow-up. J. Math. Pures Appl. 86(2), 155–175 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, X.: Global classical solutions in chemotaxis(–Navier)–Stokes system with rotational flux term. J. Differ. Equ. 261(12), 6883–6914 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 55(4(39)), 107 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cieślak, T., Winkler, M.: Global bounded solutions in a two-dimensional quasilinear Keller–Segel system with exponentially decaying diffusivity and subcritical sensitivity. Nonlinear Anal. Real World Appl. 35, 1–19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Di Francesco, M., Lorz, A., Markowich, P.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. 28(4), 1437–1453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93(9), 098103 (2004)

    Article  Google Scholar 

  7. Duan, R., Xiang, Z.: A note on global existence for the chemotaxis–Stokes model with nonlinear diffusion. Int. Math. Res. Not. IMRN 7, 1833–1852 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hillen, T., Painter, K.J.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26(4), 280–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215(1), 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kowalczyk, R.: Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl. 305(2), 566–588 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, T., Suen, A., Winkler, M., Xue, C.: Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms. Math. Models Methods Appl. Sci. 25(4), 721–746 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, Y., Li, Y.: Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species. Nonlinear Anal. 109, 72–84 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, J., Wang, Y.: Global existence and boundedness in a Keller–Segel–(Navier–)Stokes system with signal-dependent sensitivity. J. Math. Anal. Appl. 447(1), 499–528 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, J.-G., Lorz, A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(5), 643–652 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maini, P.K.: Applications of mathematical modelling to biological pattern formation. In: Coherent Structures in Complex Systems (Sitges, 2000), Volume 567 of Lecture Notes in Physics, pp. 205–217. Springer, Berlin, (2001)

    Chapter  Google Scholar 

  17. Peng, Y., Xiang, Z.: Global existence and boundedness in a 3D Keller–Segel–Stokes system with nonlinear diffusion and rotational flux. Z. Angew. Math. Phys. 68(3(26)), 68 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sugiyama, Y., Kunii, H.: Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term. J. Differ. Equ. 227(1), 333–364 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tao, Y., Winkler, M.: Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. 32(5), 1901–1914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(1), 157–178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vorotnikov, D.: Weak solutions for a bioconvection model related to Bacillus subtilis. Commun. Math. Sci. 12(3), 545–563 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Winkler, M.: Global existence and stabilization in a degenerate chemotaxis–Stokes system with mildly strong diffusion enhancement. J. Differ. Equ. 264(10), 6109–6151 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259(12), 7578–7609 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J. Differ. Equ. 261(9), 4944–4973 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Partial Differ. Equ. 54(4), 3789–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47(4), 3092–3115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1329–1352 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wrzosek, D.: Long-time behaviour of solutions to a chemotaxis model with volume-filling effect. Proc. R. Soc. Edinb. Sect. A 136(2), 431–444 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xue, C.: Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J. Math. Biol. 70(1–2), 1–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70(1), 133–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Q., Li, Y.: Global existence and asymptotic properties of the solution to a two-species chemotaxis system. J. Math. Anal. Appl. 418(1), 47–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, Q., Li, Y.: Boundedness in a quasilinear fully parabolic Keller–Segel system with logistic source. Z. Angew. Math. Phys. 66(5), 2473–2484 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Q., Li, Y.: Global boundedness of solutions to a two-species chemotaxis system. Z. Angew. Math. Phys. 66(1), 83–93 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, Q., Li, Y.: Global weak solutions for the three-dimensional chemotaxis–Navier–Stokes system with nonlinear diffusion. J. Differ. Equ. 259(8), 3730–3754 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors convey sincere gratitude to the anonymous referees for their careful reading of this manuscript and valuable comments which greatly improve the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by National Natural Science Foundation of China (Nos. 11171063, 11671079, 11701290), National Natural Science Foundation of China under Grant (No. 11601127) and National Natural Science Foundation of Jiangsu Province (No. BK20170896).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Li, Y. Global existence and boundedness of weak solutions to a chemotaxis–Stokes system with rotational flux term. Z. Angew. Math. Phys. 70, 102 (2019). https://doi.org/10.1007/s00033-019-1147-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1147-6

Keywords

Mathematics Subject Classification

Navigation