Skip to main content
Log in

Does Fluid Interaction Affect Regularity in the Three-Dimensional Keller–Segel System with Saturated Sensitivity?

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

A class of Keller–Segel–Stokes systems generalizing the prototype

$$\begin{aligned} \left\{ \begin{array}{l} n_t + u\cdot \nabla n = \Delta n - \nabla \cdot \left( n(n+1)^{-\alpha }\nabla c\right) , \\ c_t + u\cdot \nabla c = \Delta c-c+n, \\ u_t +\nabla P = \Delta u + n \nabla \phi + f(x,t), \quad \nabla \cdot u =0, \end{array} \right. \qquad \qquad (\star ) \end{aligned}$$

is considered in a bounded domain \(\Omega \subset \mathbb {R}^3\), where \(\phi \) and f are given sufficiently smooth functions such that f is bounded in \(\Omega \times (0,\infty )\). It is shown that under the condition that

$$\begin{aligned} \alpha >\frac{1}{3}, \end{aligned}$$

for all sufficiently regular initial data a corresponding Neumann–Neumann–Dirichlet initial-boundary value problem possesses a global bounded classical solution. This extends previous findings asserting a similar conclusion only under the stronger assumption \(\alpha >\frac{1}{2}\). In view of known results on the existence of exploding solutions when \(\alpha <\frac{1}{3}\), this indicates that with regard to the occurrence of blow-up the criticality of the decay rate \(\frac{1}{3}\), as previously found for the fluid-free counterpart of (\(\star \)), remains essentially unaffected by fluid interaction of the type considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Amann, H.: Dynamic theory of quasilinear parabolic systems III. Global existence. Math. Z. 202, 219–250 (1989)

    Article  MathSciNet  Google Scholar 

  2. Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Part. Differ. Equ. 55, 107 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller–Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39, 1205–1235 (2014)

    Article  MathSciNet  Google Scholar 

  4. Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller–Segel and applications to volume filling models. J. Differ. Equ. 258(6), 2080–2113 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. DiFrancesco, M., Lorz, A., Markowich, P.A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. A 28, 1437–1453 (2010)

    Article  MathSciNet  Google Scholar 

  6. Duan, R.J., Lorz, A., Markowich, P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MathSciNet  Google Scholar 

  7. Duan, R., Xiang, Z.: A note on global existence for the Chemotaxis Stokes model with nonlinear diffusion. Int. Math. Res. Notices 2012(rns270), 20 (2012). https://doi.org/10.1093/imrn/rns270

    Article  Google Scholar 

  8. Espejo, E., Suzuki, T.: Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal. Real World Appl. 21, 110–126 (2015)

    Article  MathSciNet  Google Scholar 

  9. Friedman, A.: Partial Differential Equations. Hot, Rinehart & Winston, New York (1969)

    MATH  Google Scholar 

  10. Fujiwara, D., Morimoto, H.: An \(L_r\) theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo 24, 685–700 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Giga, Y.: The Stokes operator in \(L_r\) spaces. Proc. Jpn. Acad. Ser. 2, 85–89 (1981)

    Article  Google Scholar 

  12. Giga, Y.: Solutions for semilinear parabolic equations in \(L_p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  ADS  Google Scholar 

  13. Giga, Y., Sohr, H.: Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MathSciNet  Google Scholar 

  14. Henry, D.: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, 840. Springer, Berlin-Heidelberg-New York (1981)

    Book  Google Scholar 

  15. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Super. Pisa 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  Google Scholar 

  17. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215(1), 52–107 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  Google Scholar 

  19. Kiselev, A., Xu, X.: Suppression of chemotactic explosion by mixing. Arch. Ration. Mech. Anal. 222, 1077–1112 (2016)

    Article  MathSciNet  Google Scholar 

  20. Kozono, H., Miura, M., Sugiyama, Y.: Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid. J. Funct. Anal. 270, 1663–1683 (2016)

    Article  MathSciNet  Google Scholar 

  21. Liu, J., Wang, Y.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 262, 527–5307 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Lorz, A.: Coupled Keller–Segel–Stokes model: global existence for small initial data and blow-up delay. Commun. Math. Sci. 10, 555–574 (2012)

    Article  MathSciNet  Google Scholar 

  23. Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. Theory Methods Appl. 51, 119–144 (2002)

    Article  MathSciNet  Google Scholar 

  24. Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  25. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  26. Tao, Y., Winkler, M.: Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. A 32(5), 1901–1914 (2012)

    Article  MathSciNet  Google Scholar 

  27. Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. Henri Poincaré Anal. Non Linéaire 30, 157–178 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    Article  MathSciNet  Google Scholar 

  29. Tao, Y., Winkler, M.: Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system. Z. Angew. Math. Phys. 67, 138 (2016)

    Article  MathSciNet  Google Scholar 

  30. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  ADS  Google Scholar 

  31. Wang, Y.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with subcritical sensitivity. Math. Models Methods Appl. Sci. 27, 2745–2780 (2017)

    Article  MathSciNet  Google Scholar 

  32. Wang, Y., Cao, X.: Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete Contin. Dyn. Syst. B 20, 3235–3254 (2015)

    Article  MathSciNet  Google Scholar 

  33. Wang, Y., Pang, F., Li, H.: Boundedness in a three-dimensional chemotaxis-Stokes system with tensor-valued sensitivity. Comput. Math. Appl. 71, 712–722 (2016)

    Article  MathSciNet  Google Scholar 

  34. Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier–Stokes system with subcritical sensitivity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (to appear)

  35. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259, 7578–7609 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: The 3D case. J. Differ. Equ. 261, 4944–4973 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Wang, Y., Xie, L.: Boundedness for a 3D chemotaxis-Stokes system with porous medium diffusion and tensor-valued chemotactic sensitivity. Z. Angew. Math. Phys. 68, 29 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Winkler, M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  Google Scholar 

  40. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  41. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100, 748–767 (2013). arXiv:1112.4156v1

    Article  MathSciNet  Google Scholar 

  42. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211(2), 455–487 (2014)

    Article  MathSciNet  Google Scholar 

  43. Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Partial Differ. Equ. 54, 3789–3828 (2015)

    Article  MathSciNet  Google Scholar 

  44. Winkler, M.: Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement. J. Differ. Equ. 264, 6109–6151 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Analysis of chemotactic cross-diffusion in complex frameworks, and he is grateful to Yulan Wang for numerous helpful remarks on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winkler.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by H. Kozono.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, M. Does Fluid Interaction Affect Regularity in the Three-Dimensional Keller–Segel System with Saturated Sensitivity?. J. Math. Fluid Mech. 20, 1889–1909 (2018). https://doi.org/10.1007/s00021-018-0395-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0395-0

Keywords

Mathematics Subject Classification

Navigation