Skip to main content
Log in

Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with an initial-boundary value problem in a two-dimensional smoothly bounded domain for the Keller–Segel–Navier–Stokes system with logistic source, as given by

$$\begin{aligned} \left\{ \begin{array}{rcl} n_t + u\cdot \nabla n &{} =&{} \Delta n - \nabla \cdot (n \nabla c)+rn-\mu n^2,\\ c_t + u\cdot \nabla c &{}=&{} \Delta c -c +n,\\ u_t + u\cdot \nabla u &{}=&{} \Delta u -\nabla P+n \nabla \phi +g,\\ \nabla \cdot u &{} =&{} 0, \end{array} \right. \end{aligned}$$

which describes the mutual interaction of chemotactically moving microorganisms and their surrounding incompressible fluid. It is shown that whenever \(\mu >0\), \(r\ge 0\), \(g\in C^1(\bar{\Omega }\times [0,\infty )) \cap L^\infty (\Omega \times (0,\infty )) \) and the initial data \((n_0, c_0, u_0)\) are sufficiently smooth fulfilling \(n_0\not \equiv 0\), the considered problem possesses a global classical solution which is bounded. Moreover, if \(r=0\), then this solution satisfies

$$\begin{aligned} n(\cdot ,t)\rightarrow 0 \quad \hbox {and} \quad c(\cdot ,t)\rightarrow 0 \quad \hbox {in } L^\infty (\Omega ) \end{aligned}$$

as \(t\rightarrow \infty \), and if additionally \(\int \limits _0^\infty \int \limits _\Omega |g(x,t)|^2 \hbox {d}x\hbox {d}t < \infty \), then all solution components decay in the sense that

$$\begin{aligned} n(\cdot ,t)\rightarrow 0, \quad c(\cdot ,t)\rightarrow 0 \quad \hbox {and} \quad u(\cdot ,t)\rightarrow 0 \quad \hbox {in } L^\infty (\Omega ) \end{aligned}$$

as \(t\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, X., Ishida, S.: Global-in-time bounded weak solutions to a degenerate quasilinear Keller–Segel system with rotation. Nonlinearity 27, 1899–1914 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chae, M., Kang, K., Lee, J.: Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete Contin. Dyn. Syst. 33, 2271–2297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller–Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39, 1205–1235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coll, J.C., et al.: Chemical aspects of mass spawning in corals. I. Sperm-attractant molecules in eggs of the scleractinian coral Montipora digitata. Mar. Biol. 118, 177–182 (1994)

    Article  Google Scholar 

  5. DiFrancesco, M., Lorz, A., Markowich, P.A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. A 28, 1437–1453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103-1–098103-4 (2004)

    Article  Google Scholar 

  7. Duan, R.J., Lorz, A., Markowich, P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duan, R., Xiang, Z.: A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion. Int. Math. Res. Not. (2012). doi:10.1093/imrn/rns270

  9. Espejo, E., Suzuki, T.: Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal. Real World Appl. 21, 110–126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedman, A.: Partial Differential Equations. Holt, Rinehart & Winston, New York (1969)

    MATH  Google Scholar 

  11. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giga, Y., Sohr, H.: Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  14. Herrero, M.A., Velázquez, J.L.L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa C. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Hillen, T., Painter, K.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ishida, S.: Global existence and boundedness for chemotaxis-Navier–Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete Contin. Dyn. Syst. 35, 3463–3482 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  18. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and enhancement of biological reactions. Commun. Partial Differ. Equ. 37, 298–312 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case. J. Math. Phys. 53, 115609 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lankeit, J.: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J. Differ. Equ. 258, 1158–1191 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, X., Wang, Y., Xiang, Z.: Global existence and boundedness in a 2D Keller–Segel–Stokes system with nonlinear diffusion and rotational flux. Commun. Math. Sci. 14, 1889–1910 (2016)

  22. Liu, J.-G., Lorz, A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. H. Poincaré Anal. Non Linéaire. 28, 643–652 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miller, R.L.: Demonstration of sperm chemotaxis in Echinodermata: Asteroidea, Holothuroidea, Ophiuroidea. J. Exp. Zool. 234, 383–414 (1985)

    Article  Google Scholar 

  24. Nagai, T.: Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6, 37–55 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Painter, K.J., Hillen, T.: Spatio-temporal chaos in a chemotaxis model. Phys. D 240, 363–375 (2011)

    Article  MATH  Google Scholar 

  27. Sohr, H.: The Navier–Stokes equations. An elementary functional analytic approach. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  28. Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46, 1969–2007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tao, Y., Winkler, M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252, 2520–2543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tao, Y., Winkler, M.: Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. A 32(5), 1901–1914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tao, Y., Winkler, M.: Locally bounded global soutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. H. Poincaré, Analyse Non Linéaire. 30, 157–178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  MATH  Google Scholar 

  34. Vorotnikov, D.: Weak solutions for a bioconvection model related to Bacillus subtilis. Commun. Math. Sci. 12, 545–563 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Y., Cao, X.: Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete Contin. Dyn. Syst. B 20, 3235–3254 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier–Stokes system with subcritical sensitivity (Preprint)

  37. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259, 7578–7609 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wiegner, M.: The Navier–Stokes eauations-a neverending challenge? Jahresber. DMV 101, 1–25 (1999)

    MathSciNet  MATH  Google Scholar 

  39. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013). arXiv:1112.4156v1

  44. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Winkler, M.: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening. J. Differ. Equ. 257, 1056–1077 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire. 33, 1329–1352 (2016)

Download references

Acknowledgments

Y. Tao is supported by the National Natural Science Foundation of China (No. 11571070). M. Winkler acknowledges support of the Deutsche Forschungsgemeinschaft within the project Analysis of chemotactic cross-diffusion in complex frameworks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youshan Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Y., Winkler, M. Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system. Z. Angew. Math. Phys. 67, 138 (2016). https://doi.org/10.1007/s00033-016-0732-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0732-1

Keywords

Mathematics Subject Classification

Navigation