Skip to main content
Log in

DcMaster transposon display markers as a tool for diversity evaluation of carrot breeding materials and for hybrid seed purity testing

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

In recent years, transposon insertion polymorphisms have been utilized as molecular markers, and a range of techniques tailored towards identification of insertion sites of various transposable elements have been developed. In the present paper we describe the application of a recently developedDcMaster transposon display system to analyse the genetic diversity of Polish breeding materials of carrot (Daucus carota) and to identify polymorphisms useful for hybrid seed purity testing. Using 3 sets of breeding materials (each consisting of the cytoplasmic male sterility stock, the maintainer, the pollinator, and the corresponding F1 hybrid), we identified 56 DcMTD markers.DcMaster insertion sites proved to be highly polymorphic in cultivated carrot, as 79% of all insertion sites differentiated between individual plants. Fourteen stock-specific DcMTD markers were further selected as potentially useful for hybrid seed purity testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boerner T, Linke B, Nothnagel T, Scheike R, Schulz B, Steinborn R, et al. 1995. Inheritance of nuclear and cytoplasmic factors affecting male sterility inDaucus carota. In: Kück U, Wricke G, eds. Genetic mechanisms for hybrid breeding, Oxford/Berlin: Blackwell Scientific: 111–122.

    Google Scholar 

  • Bradeen JM, Bach CI, Briard M, LeClerc V, Grzebelus D, Senalik DA, Simon PW, 2002. Molecular diversity analysis of cultivated carrot (Daucus carota L.) and wildDaucus populations reveals a genetically nonstructured composition. J Am Soc Hort Sci 127: 383–391.

    CAS  Google Scholar 

  • Bradeen JM, Simon PW, 1998. Conversion of an AFLP fragment linked to the carrotY 2 locus to a simple, codominant PCR-based marker form. Theor Appl Genet 97: 960–967.

    Article  CAS  Google Scholar 

  • Briard M, LeClerc V, Grzebelus D, Senalik D, Simon PW, 2000. Modified protocols for rapid carrot genomic DNA extraction and AFLP anaysis using silver stain or radioisotopes. Plant Mol Biol Rep 18: 235–241.

    Article  CAS  Google Scholar 

  • Capy P, Bazin C, Higuet D, Langin T, 1998. Dynamics and evolution of transposable elements. Austin: Landes Bioscience.

    Google Scholar 

  • Casa AM, Mitchel SE, Smith OS, Register III JC, Wessler SR, Kresovich S, 2002. Evaluation ofHbr (MITE) markers for assessment of genetic relationships among maize (Zea mays L.) inbred lines. Theor Appl Genet 104: 104–110.

    Article  CAS  PubMed  Google Scholar 

  • Chang R-Y, O’Donoughue LS, Bureau TE, 2001. Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor Appl Genet 102: 773–781.

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N, 1987. Isolation of RNA by the single-step acid guanidinium thiocyanate-phenol-chloroform extraction method. Anal Biochem 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  • Diers BW, McVetty PBE, Osborn TC, 1996. Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (Brassica napus L.). Crop Sci 36: 79–83.

    Article  Google Scholar 

  • Felsenstein J, 2004. PHYLIP (Phylogeny Inference Package) version 3.6. Seattle: Department of Genome Sciences, University of Washington.

    Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis THN, 1998. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16: 643–650.

    Article  CAS  PubMed  Google Scholar 

  • Grzebelus D, Jagosz B, Simon PW, 2007. The DcMaster Transposon Display maps polymorphic insertion sites in the carrot (Daucus carota L.) genome. Gene 390: 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Grzebelus D, Yau Y-Y, Simon PW, 2006.Master: a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota L.). Mol Genet Genomics 275: 450–459.

    Article  CAS  PubMed  Google Scholar 

  • Grzebelus D, Senalik D, Jagosz B, Simon PW, Michalik B, 2001. The use of AFLP markers for the identification of carrot breeding lines and F1 hybrids. Plant Breeding 120: 526–528.

    Article  CAS  Google Scholar 

  • Grzebelus D, Szklarczyk M, Michalik B, 1997. The use of RAPD markers for genotype identification of carrot lines and F1 hybrids. J Appl Genet 38A: 33–41.

    Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A, 1999. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98: 704–711.

    Article  CAS  Google Scholar 

  • Kwon S-J, Park K-C, Kim J-H, Lee JK, Kim N-S, 2005.Rim2/Hipa CACTA transposon display: a new genetic marker technique inOzyza species. BMC Genetics 6: 15 doi: 10.1186/1471-2156-6-15.

    Article  PubMed  Google Scholar 

  • Le QH, Bureau T, 2004. Prediction and quality assessment of transposon insertion display data. BioTechniques 36: 222–228.

    CAS  PubMed  Google Scholar 

  • Leigh F, Kalendar R, Lea V, Lee D, Donini P, Schulman AH, 2003. Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol Genet Genomics 269: 464–474.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima Y, Oeda K, Yamamoto T, 1998. Characterization of genetic diversity of nuclear and mitochondrial genomes inDaucus varieties by RAPD and AFLP. Plant Cell Rep 17: 848–853.

    Article  CAS  Google Scholar 

  • Rubatzky VE, Quiros CF, Simon PW, 1999. Carrot and related vegetable Umbelliferae. Wallingford: CABI Publishing.

    Google Scholar 

  • Shim SI, Jørgensen RB, 2000. Genetic structure in cultivated and wild carrot (Daucus carota L.) revealed by AFLP analysis. Theor Appl Genet 101: 227–233.

    Article  CAS  Google Scholar 

  • Stein M, Nothnagel T, 1995. Some remarks on carrot breeding (Daucus carota sativus Hoffm.). Plant Breeding 114: 1–11.

    Article  Google Scholar 

  • Van den Broeck D, Maes T, Sauer M, Zethof J, De Keukeleire P, D’Hauw M, et al. 1998. Transposon Display identifies individual transposable elements in high copy number lines. Plant J 13: 121–129.

    PubMed  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BT, Powell W, 1997. Genetic distribution of BARE-1 retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Genet Genomics 253: 687–694.

    Article  CAS  Google Scholar 

  • Xiao J, Li J, Yuan L, McCouch SR, Tanksley SD, 1996. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor Appl Genet 92: 637–643.

    Article  CAS  Google Scholar 

  • Yephremov A, Saedler H, 2000. Display and isolation of transposon-flanking sequences starting from genomic DNA or RNA. Plant J 21: 495–505.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Grzebelus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macko, A., Grzebelus, D. DcMaster transposon display markers as a tool for diversity evaluation of carrot breeding materials and for hybrid seed purity testing. J Appl Genet 49, 33–39 (2008). https://doi.org/10.1007/BF03195246

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195246

Keywords

Navigation