Skip to main content
Log in

Mutator-Based Transposon Display: A Genetic Tool for Evolutionary and Crop-Improvement Studies in Maize

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Transposable elements account for up to 85% of the maize genome and have significant implications in crop-improvement and evolutionary analyses. The Mutator (Mu) transposon superfamily, a class of DNA transposons, comprises the most complex and active elements in the maize genome, suggesting a special role in plant evolution. Here, we designed a set of Mu-specific primers based on terminal invert repeats and used a transposon display (TD) method for genotyping. We analyzed the distribution pattern of Mu insertions in teosinte (wild relative), sorghum (distant relative), and domesticated maize accessions (dent, sweet, and waxy). The MU-TD analysis suggested the presence of high polymorphic insertions among the species and subspecies, indicating the utility of the method in studying genetic variation and species relationships. Furthermore, we analyzed 80 maize recombinant inbred line populations. Mu-TD generated an average of 60% Mu-anchored polymorphic fragments in which insertions appeared to be segregating in significantly high numbers. The amplification profile was highly reproducible, confirming the utility of Mu elements as a new set of TD markers for developing high-density genetic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saxena, R. K., Edwards, D., & Varshney, R. K. (2014). Structural variations in plant genomes. Briefings in Functional Genomics, 13(4), 296–307.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Springer, N. M., Ying, K., Fu, Y., Ji, T., Yeh, C. T., Jia, Y., et al. (2009). Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genetics, 5(11), e1000734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tenaillon, M. I., Hollister, J. D., & Gaut, B. S. (2010). A triptych of the evolution of plant transposable elements. Trends in Plant Science, 15(8), 471–478.

    Article  CAS  PubMed  Google Scholar 

  4. Lisch, D. (2013). How important are transposons for plant evolution? Nature Reviews Genetics, 14(1), 49–61.

    Article  CAS  PubMed  Google Scholar 

  5. Studer, A., Zhao, Q., Ross-Ibarra, J., & Doebley, J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 43(11), 1160–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, Q., Li, Z., Li, W., Ku, L., Wang, C., Ye, J., et al. (2013). CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 16969–16974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Castelletti, S., Tuberosa, R., Pindo, M., & Salvi, S. (2014). A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1. G3, 4(5), 805–812.

    Article  CAS  PubMed  Google Scholar 

  8. Meyer, R. S., & Purugganan, M. D. (2013). Evolution of crop species: Genetics of domestication and diversification. Nature Reviews Genetics, 14(12), 840–852.

    Article  CAS  PubMed  Google Scholar 

  9. Strable, J., & Scanlon, M. J. (2009). Maize (Zea mays): A model organism for basic and applied research in plant biology. Cold Spring Harbor Protocols, 2009(10), pdb-emo132.

    Article  CAS  PubMed  Google Scholar 

  10. Nannas, N. J., & Dawe, R. K. (2015). Genetic and genomic toolbox of Zea mays. Genetics, 199(3), 655–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., et al. (2009). The B73 maize genome: Complexity, diversity, and dynamics. Science, 326(5956), 1112–1115.

    Article  CAS  PubMed  Google Scholar 

  12. Vitte, C., Fustier, M. A., Alix, K., & Tenaillon, M. I. (2014). The bright side of transposons in crop evolution. Briefings in Functional Genomics, 13(4), 276–295.

    Article  PubMed  Google Scholar 

  13. Hufford, M. B., Bilinski, P., Pyhajarvi, T., & Ross-Ibarra, J. (2012). Teosinte as a model system for population and ecological genomics. Trends in Genetics, 28(12), 606–615.

    Article  CAS  PubMed  Google Scholar 

  14. Tenaillon, M. I., Hufford, M. B., Gaut, B. S., & Ross-Ibarra, J. (2011). Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biology and Evolution, 3, 219–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., et al. (2007). A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 8(12), 973–982.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, J., Birchler, J. A., Parrott, W. A., & Dawe, R. K. (2003). A molecular view of plant centromeres. Trends in Plant Science, 8(12), 570–575.

    Article  CAS  PubMed  Google Scholar 

  17. Bennetzen, J. L., Ma, J., & Devos, K. M. (2005). Mechanisms of recent genome size variation in flowering plants. Annals of Botany, 95(1), 127–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dooner, H. K., & Weil, C. F. (2007). Give-and-take: interactions between DNA transposons and their host plant genomes. Current Opinion in Genetics & Development, 17(6), 486–492.

    Article  CAS  Google Scholar 

  19. Munoz-Lopez, M., & Garcia-Perez, J. L. (2010). DNA transposons: Nature and applications in genomics. Current Genomics, 11(2), 115–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robertson, D. S. (1978). Characterization of a mutator system in maize. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 51(1), 21–28.

    Article  Google Scholar 

  21. Bennetzen, J. L. (1996). The mutator transposable element system of maize. Current Topics in Microbiology and Immunology, 204, 195–229.

    CAS  PubMed  Google Scholar 

  22. Zhong, W., Zhang, M., Yang, L., Wang, M., Zheng, Y., Yang, W., & Gao, Y. (2012). Isolating the mutator transposable element insertional mutant gene mio16 of maize using double selected amplification of insertion flanking fragments (DSAIFF). Journal of Integrative Agriculture, 11(10), 1592–1600.

    Article  CAS  Google Scholar 

  23. Ohtsu, K., Hirano, H. Y., Tsutsumi, N., Hirai, A., & Nakazono, M. (2005). Anaconda, a new class of transposon belonging to the Mu superfamily, has diversified by acquiring host genes during rice evolution. Molecular Genetics and Genomics, 274(6), 606–615.

    Article  CAS  PubMed  Google Scholar 

  24. Luehrsen, K. R., & Walbot, V. (1990). Insertion of Mu1 elements in the first intron of the Adh1-S gene of maize results in novel RNA processing events. The Plant cell, 2(12), 1225–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, W., VanOpdorp, N., Fitzl, D., Tewari, J., Friedemann, P., Greene, T., Thompson, S., Kumpatla, S., & Zheng, P. (2012). Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for a brown midrib1 mutation in maize. Plant Molecular Biology, 80(3), 289–297.

    Article  CAS  PubMed  Google Scholar 

  26. Barkan, A., & Martienssen, R. A. (1991). Inactivation of maize transposon Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end of Mu1. Proceedings of the National Academy of Sciences of the United States of America, 88(8), 3502–3506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Settles, A. M., Baron, A., Barkan, A., & Martienssen, R. A. (2001). Duplication and suppression of chloroplast protein translocation genes in maize. Genetics, 157(1), 349–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneeberger, R. G., Becraft, P. W., Hake, S., & Freeling, M. (1995). Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes & Development, 9(18), 2292–2304.

    Article  CAS  Google Scholar 

  29. Muehlbauer, G. J., Fowler, J. E., Girard, L., Tyers, R., Harper, L., & Freeling, M. (1999). Ectopic expression of the maize homeobox gene liguleless3 alters cell fates in the leaf. Plant Physiology, 119(2), 651–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirsch, C. D., & Springer, N. M. (2017). Transposable element influences on gene expression in plants. Biochimica et Biophysica Acta, 1860(1), 157–165.

    Article  CAS  PubMed  Google Scholar 

  31. Diao, X. M., & Lisch, D. (2006). Mutator transposon in maize and MULEs in the plant genome. Yi Chuan Xue Bao, 33(6), 477–487.

    CAS  PubMed  Google Scholar 

  32. Lisch, D. (2015). Mutator and MULE transposons. Microbiology Spectrum. https://doi.org/10.1128/microbiolspec.MDNA3-0032-2014.

    Article  PubMed  Google Scholar 

  33. Juretic, N., Hoen, D. R., Huynh, M. L., Harrison, P. M., & Bureau, T. E. (2005). The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Research, 15(9), 1292–1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang, N., Bao, Z., Zhang, X., Eddy, S. R., & Wessler, S. R. (2004). Pack-MULE transposable elements mediate gene evolution in plants. Nature, 431(7008), 569–573.

    Article  CAS  PubMed  Google Scholar 

  35. Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368–376.

    Article  CAS  PubMed  Google Scholar 

  36. Wright, S. I., Le, Q. H., Schoen, D. J., & Bureau, T. E. (2001). Population dynamics of an Ac-like transposable element in self- and cross-pollinating Arabidopsis. Genetics, 158(3), 1279–1288.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lisch, D. (2002). Mutator transposons. Trends in Plant Science, 7(11), 498–504.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Y., Xu, M., Deng, D., & Bian, Y. (2008). Maize mutator transposon. Frontiers of Agriculture in China, 2(4), 396–403.

    Article  Google Scholar 

  39. Beadle, G. W. (1932). Studies of Euchlaena and its hybrids with Zea. Zeitschrift für Induktive Abstammungs-und Vererbungslehre, 62(1), 291–304.

    Google Scholar 

  40. Matsuoka, Y., Vigouroux, Y., Goodman, M. M., Sanchez, G. J., Buckler, E., & Doebley, J. (2002). A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America, 99(9), 6080–6084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hufford, M. B., Lubinksy, P., Pyhajarvi, T., Devengenzo, M. T., Ellstrand, N. C., & Ross-Ibarra, J. (2013). The genomic signature of crop-wild introgression in maize. PLoS Genetics, 9(5), e1003477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lai, J., Li, R., Xu, X., Jin, W., Xu, M., Zhao, H., et al. (2010). Genome-wide patterns of genetic variation among elite maize inbred lines. Nature Genetics, 42(11), 1027–1030.

    Article  CAS  PubMed  Google Scholar 

  43. Springer, N. M., & Stupar, R. M. (2007). Allelic variation and heterosis in maize: How do two halves make more than a whole? Genome Research, 17(3), 264–275.

    Article  CAS  PubMed  Google Scholar 

  44. Sa, K. J., Park, J. Y., Park, K.-C., & Lee, J. K. (2012). Analysis of genetic mapping in a waxy/dent maize RIL population using SSR and SNP markers. Genes & Genomics, 34(2), 157–164.

    Article  CAS  Google Scholar 

  45. Beavis, W. D., & Grant, D. (1991). A linkage map based on information from four F2 populations of maize (Zea mays L.). Theoretical and Applied Genetics, 82(5), 636–644.

    Article  CAS  PubMed  Google Scholar 

  46. Gardiner, J. M., Coe, E. H., Melia-Hancock, S., Hoisington, D. A., & Chao, S. (1993). Development of a core RFLP map in maize using an immortalized F2 population. Genetics, 134(3), 917–930.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Castiglioni, P., Ajmone-Marsan, P., van Wijk, R., & Motto, M. (1999). AFLP markers in a molecular linkage map of maize: Codominant scoring and linkage group ditsribution. Theoretical and Applied Genetics, 99(3–4), 425–431.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, F., Wan, X. Q., & Pan, G. T. (2006). QTL mapping of Fusarium moniliforme ear rot resistance in maize. 1. Map construction with microsatellite and AFLP markers. Journal of Applied Genetics, 47(1), 9–15.

    Article  PubMed  Google Scholar 

  49. Casa, A. M., Brouwer, C., Nagel, A., Wang, L., Zhang, Q., Kresovich, S., & Wessler, S. R. (2000). The MITE family heartbreaker (Hbr): Molecular markers in maize. Proceedings of the National Academy of Sciences of the United States of America, 97(18), 10083–10089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu, H., Romero-Severson, J., & Bernardo, R. (2002). Chromosomal regions associated with segregation distortion in maize. Theoretical and Applied Genetics, 105(4), 622–628.

    Article  CAS  PubMed  Google Scholar 

  51. Pradhan, A. K., Gupta, V., Mukhopadhyay, A., Arumugam, N., Sodhi, Y. S., & Pental, D. (2003). A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theoretical and Applied Genetics, 106(4), 607–614.

    Article  CAS  PubMed  Google Scholar 

  52. Liu, G., Bernhardt, J. L., Jia, M. H., Wamishe, Y. A., & Jia, Y. (2008). Molecular characterization of the recombinant inbred line population derived from a Japonica-Indica rice cross. Euphytica, 159(1), 73–82.

    Article  CAS  Google Scholar 

  53. Zhu, C., Wang, C., & Zhang, Y. M. (2007). Modeling segregation distortion for viability selection. I. Reconstruction of linkage maps with distorted markers. Theoretical and Applied Genetics, 114(2), 295–305.

    Article  PubMed  Google Scholar 

  54. Taylor, D. R., & Ingvarsson, P. K. (2003). Common features of segregation distortion in plants and animals. Genetica, 117(1), 27–35.

    Article  CAS  PubMed  Google Scholar 

  55. Lee, J. K., Park, J. Y., Kim, J. H., Kwon, S. J., Shin, J. H., Hong, S. K., Min, H. K., & Kim, N. S. (2006). Genetic mapping of the Isaac-CACTA transposon in maize. Theoretical and Applied Genetics, 113(1), 16–22.

    Article  CAS  PubMed  Google Scholar 

  56. Kwon, S. J., Park, K. C., Kim, J. H., Lee, J. K., & Kim, N. S. (2005). Rim 2/Hipa CACTA transposon display: A new genetic marker technique in Oryza species. BMC Genetics, 6, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Cooperative Research Program for Agriculture Science & Technology Development (Project Title #PJ01177601, Project #PJ011776), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Kyong Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12033_2018_118_MOESM1_ESM.jpg

Online Resource 1—Mu-specific primer designing scheme. a) Grouping of TIR sequences based on a phylogenetic tree, b) TIR regions were further subgrouped and were aligned to obtain a consensus region, c) Primers were designed based on the consensus region covering the TIR group (JPG 439 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramekar, R.V., Park, KC., Sa, K.J. et al. Mutator-Based Transposon Display: A Genetic Tool for Evolutionary and Crop-Improvement Studies in Maize. Mol Biotechnol 60, 799–809 (2018). https://doi.org/10.1007/s12033-018-0118-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0118-z

Keywords

Navigation