Skip to main content
Log in

Effects of myocardial contraction on coronary blood flow: An integrated model

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The effects of myocardial contraction on the coronary flow are studied by means of an integrated structural model of left ventricular (LV) mechanics, coronary flow, and fluid and mass transport. This model relates global LV performance, and in particular coronary flow dynamics, to myocardial composition and structure and contractile sarcomere activity. Extravascular pressure is identified with hydrostatic tissue pressure,i. e., intramyocardial pressure (IMP), and is determined by the dynamics of myocardial contraction and fluid transport. Consistent with available experimental data, changes in myocardial function and contractile state are simulated by changing the sarcomere contractile properties or changing the LV loading conditions. The model's predictions are successfully compared with a wide range of experimental studies; all but one were performed at a constant coronary perfusion pressure and maximal vasodilation. The results indicate a domiant effect of the myocardial contractile state on coronary flow and a dissocation between coronary compression and LV cavity pressure (LVP) when the pressure is controlled by load changes. However, when active sarcomere contraction is regionally impaired by lidocaine, LVP plays an important role in the coronary flow characteristics. The model adequately predicts observations on the effect of cardiac contraction on systolic and diastolic coronary flows, as well as the role of LVP at different loading and contractile conditions. The analysis supports the hypothesis that coronary compression, as mediated through IMP, is independent of LV loading conditions and depends on myocardial contractility and coronary perfusion pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel, F. L., R. R. Zhao, and R. F. Bond. Contribution of extravascular compression to reduction of maximal coronary blood flow.Am. J. Physiol. 262:H68-H77, 1992.

    CAS  PubMed  Google Scholar 

  2. Arts, T., and R. S. Reneman. Interaction between intramyocardial pressure (IMP) and myocardial circulation.J. Biomech. Eng. 107:51–56, 1985.

    CAS  PubMed  Google Scholar 

  3. Beyar, R., and S. Sideman. A computer study of the left ventricular performance based on fiber structure, sarcomere dynamics and transmural electrical propagation velocity.Circ. Res. 55:358–375, 1984.

    CAS  PubMed  Google Scholar 

  4. Beyar, R., and S. Sideman. Time-dependent coronary blood flow distribution in the left ventricular wall.Am. J. Physiol. 252:H417-H433, 1987.

    CAS  PubMed  Google Scholar 

  5. Beyar, R., R. Caminker, D. Manor, and S. Sideman. Coronary flow patterns in normal and ischemic hearts: Transmyocardial and artery to vein distribution.Ann. Biomed. Eng. 21:435–458, 1993.

    Article  CAS  PubMed  Google Scholar 

  6. Beyar, R., R. Ben-Ari, C. A. Gibbons-Kroeker, J. V. Tyberg, and S. Sideman. The effect of interconnecting collagen fibers on LV function and intramyocardial compression.Cardiovasc. Res. 27(12):2254–2263, 1993.

    CAS  PubMed  Google Scholar 

  7. Braunwald, E., E. H. Sonnenblick, and J. R. Ross. Mechanisms of cardiac contraction and relaxation. In: Heart Disease. A Textbook of Cardiovascular Medicine, edited by E. Braunwald. Philadelphia: W. B. Saunders Co., 1988, pp. 383–425.

    Google Scholar 

  8. Bruinsma, P., T. Arts, J. Dankelman, and J. A. E. Spaan. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance.Basic Res. Card. 83:510–524, 1988.

    CAS  Google Scholar 

  9. Chadwick, R. S., A. Tedgui, J. B. Michel, J. Ohayon, and B. I. Levy. Phasic regional myocardial inflow and outflow: Comparison of theory and experiments.Am. J. Physiol. 258:H1687-H1698, 1990.

    CAS  PubMed  Google Scholar 

  10. Doucette, J. W., M. Goto, A. E. Flynn, R. E. Austin, Jr., W. Husseini, and J. I. E. Hoffman. Effects of cardiac contraction and cavity pressure on myocardial blood flow.Am. J. Physiol. 265:H1342-H1352, 1993.

    CAS  PubMed  Google Scholar 

  11. Downey, J. M., and E. S. Kirk. Inhibition of coronary blood flow by a vascular waterfall mechanism.Circ. Res. 36:753–760, 1975.

    CAS  PubMed  Google Scholar 

  12. Guccione, J. M., A. D. McCulloch, and L. K. Waldman. Pissive material properties of intact ventricular myocardium determined from a cylindrical model.J. Biomech. Eng. 113: 42–55, 1991.

    CAS  PubMed  Google Scholar 

  13. Hoffman, J. I. E., and J. A. E. Spaan. Pressure-flow relations in coronary circulation.Physiol. Rev. 70:331–390, 1990.

    CAS  PubMed  Google Scholar 

  14. Holenstein, R., and R. M. Nerem. Parametric analysis of flow in the intramyocardial circulation.Ann. Biomed. Eng. 18:347–365, 1990.

    Article  CAS  PubMed  Google Scholar 

  15. Katz, S. A., and E. O. Feigl. Systole has little effect on diastolic coronary artery blood flow.Circ. Res. 62:443–451, 1988.

    CAS  PubMed  Google Scholar 

  16. Kedem, O., and A. Katchalsky. Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes.Biochim. Biophys. Acta 27:229–246, 1958.

    Article  CAS  PubMed  Google Scholar 

  17. Kouwenhoven, E., I. Vergroesen, Y. Han, and J. A. E. Spaan. Retrograde coronary flow is limited by time varying elastance.Am. J. Physiol. 263:H484-H490, 1992.

    CAS  PubMed  Google Scholar 

  18. Krams, R., P. Sipkema, and N. Westerhof. Varying elastance concept may explain coronary systolic flow impediment.Am. J. Physiol. 257:H1471-H1479, 1989a.

    CAS  PubMed  Google Scholar 

  19. Krams, R., P. Sipkema, J. Zegers, and N. Westerhof. Contractility is the main determinant of coronary systolic flow impediment.Am. J. Physiol. 257:H1936-H1944, 1989b.

    CAS  PubMed  Google Scholar 

  20. Krams, R., P. Sipkema, and N. Westerhof. Coronary oscillatory flow amplitude is more affected by perfusion pressure than ventricular pressure.Am. J. Physiol. 258:H1889-H1898 1990.

    CAS  PubMed  Google Scholar 

  21. Kresh, J. Y., M. Fox, S. K. Brockman, and A. Noordergraaf. Model-based analysis of transmural vessel impedance and myocardial circulation dynamics.Am. J. Physiol. 258:H262-H276, 1990.

    CAS  PubMed  Google Scholar 

  22. Laine, G. A., and H. J. Granger. Microvascular, interstitial and lymphatic interactions in normal heart.Am. J. Physiol. 249:H834-H842, 1985.

    CAS  PubMed  Google Scholar 

  23. Livingston, J. Z., J. R. Resar, and F. C. P. Yin. Effect of tetanic myocardial contraction on coronary pressure-flow relationships.Am. J. Physiol. 265:H1215-H1226, 1993.

    CAS  PubMed  Google Scholar 

  24. Manor, D., R. Beyar, and S. Sideman. Pressure-flow characteristics of the coronary collaterals: A model study.Am. J. Physiol. 266:H310-H318, 1994.

    CAS  PubMed  Google Scholar 

  25. Mulligan, L. J., D. Escobedo, and G. L. Freeman. Mechanical determinants of coronary blood flow during dynamic alterations in myocardial contractility.Am. J. Physiol. 265:H1112-H1118 1993.

    CAS  PubMed  Google Scholar 

  26. Ohayon, J., and R. S. Chadwick. Effects of collagen microstructure on the mechanics of the left ventricle.Biophys. J. 54:1077–1088, 1988.

    CAS  PubMed  Google Scholar 

  27. Olsson, R. A., R. Bunger, and J. A. E. Spaan. Coronary circulation. In: The Heart and Cardiovascular System (second edition) edited by H. A. Fozzard, E. Haber, R. B. Jennings, A. M. Katz, and H. E. Morgan. New York: Raven Press, Ltd., 1992, pp. 1393–1425.

    Google Scholar 

  28. Pinto, J. G., A constitutive description of contracting papillary muscle and its implications to the dynamics of the intact heart.J. Biomech. Eng. 109:181–190, 1987.

    CAS  PubMed  Google Scholar 

  29. Pollack, G. H., and J. W. Krueger. Myocardial sarcomere mechanics: Some parallels with skeletal muscle. In: Cardiovascular System Dynanics, edited by Y. Baan, A. Noordegraaf, and J. Raines, Cambridge, MA: MIT Press, 1978, pp. 3–10.

    Google Scholar 

  30. Sagawa, K., H. Suga, A. A. Shoukas and K. M. Bakalar. End-systolic pressure/volume ratio: A new index of ventricular contractility.Am. J. Cardiol. 40:748–753, 1977.

    Article  CAS  PubMed  Google Scholar 

  31. Spaan, J. A. E. Coronary Blood Flow: Mechanics, Distribution and Control. Dordrecht: Kluwer Academic Publishers, 1992, pp. 131–188.

    Google Scholar 

  32. Spaan, J. A. E., N. P. W. Breuls, and J. D. Laird. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog.Circ. Res. 49:584–593, 1981.

    CAS  PubMed  Google Scholar 

  33. Streeter, D. D., H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick. Fiber orientation in the canine left ventricle during diastole and systole.Circ. Res. 24:339–347. 1969.

    PubMed  Google Scholar 

  34. Zinemanas, D., R. Beyar, and S. Sideman. Intramyocardial fluid transport effects on coronary flow and LV mechanics. In: Interactive Phenomena in the Cardiac System, edited by S. Sideman and R. Beyar. New York: Plenum Publishing Corp., 1993, pp. 219–231.

    Google Scholar 

  35. Zinemanas, D., R. Beyar, and S. Sideman. Relating mechanics, blood flow and mass transport in the cardiac muscle.Int. J. Heat Mass Transfer 37(1):191–205, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinemanas, D., Beyar, R. & Sideman, S. Effects of myocardial contraction on coronary blood flow: An integrated model. Ann Biomed Eng 22, 638–652 (1994). https://doi.org/10.1007/BF02368289

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368289

Keywords

Navigation