Skip to main content
Log in

Parametric analysis of flow in the intramyocardial circulation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A simple mathematical model of the intramyocardial circulation has been utilized to provide a better understanding of coronary blood flow. The model includes three myocardial layers, each characterized by a three-parameter windkessel with one capacitance and two resistances. The effects of the beating heart are taken into account by means of an intramyocardial pump and the possible collapse of the vessels by an elevated backpressure. The three basic parameters that govern the flow are a normalized time constant,\(\bar \tau \), the total resistance, Rt, and a parameter, α, which specifies the resistance distribution in the intramyocardial circulation. Both the normal beating heart and prolonged diastole have been investigated analytically as well as numerically. It is shown that each of these parameters has its own special significance. Calculated pressure-flow relationships and zero-flow pressures for the case of prolonged diastole show a high sensitivity to\(\bar \tau \) and α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beyar, R.; Sideman, S. Time-dependent coronary blood flow distribution in left ventricular wall. Am. J. Physiol. 252 (Heart Circ. Physiol. 21):H417-H433; 1987.

    CAS  PubMed  Google Scholar 

  2. Bellamy, R.F. Diastolic coronary artery pressure-flow relations in the dog. Circ. Res. 43:92–101; 1978.

    CAS  PubMed  Google Scholar 

  3. Burratini, R.; Sipkema, P.; van Huis, G.A.; Westerhof, N. Identification of canine coronary resistance and intramyocardial compliance on the basis of the waterfall model. Ann. Biomed. Eng. 13:385–404; 1985.

    Google Scholar 

  4. Dole, W.P.; Cambell, A.B.; Alexander, G.M.; Hixson, E.L.; Bishop, V.S. Physiological interpretation of diastolic coronary artery pressure-flow relationships in the canine coronary bed. In: Mates, R.E.; Nerem, R.M.; Stein, P.D., eds. Mechanics of the coronary circulation. New York: American Society of Mechanical Engineers; 1983: pp. 27–30.

    Google Scholar 

  5. Downey; J.M.; Kirk, E.S. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ. Res. 36:753–760; 1975.

    CAS  PubMed  Google Scholar 

  6. Eng, C.; Jentzer, J.H.; Kirk, E.S. The effects of the coronary capacitance on the interpretation of diastolic pressure-flow relationships. Circ. Res. 50:334–341; 1982.

    CAS  PubMed  Google Scholar 

  7. Richards, K.L.; Hartley, C.J.; Cannon, S. Usefulness of Doppler catheters in assessment of coronary artery blood flow. In: Spencer, M.P., ed. Cardiac Doppler diagnosis. Boston, MA: Martinus Nijhoff; 1983: pp. 91–97.

    Google Scholar 

  8. Hoffman, J.I.E.; Baer, R.W.; Hanley, F.L.; Messina, L.M. Regulation of transmural myocardial blood flow. ASME J. Biomech. Eng. 107:2–9; 1985.

    CAS  Google Scholar 

  9. Hori, S. Comments to (6). Circ Res. 51:819–820; 1982.

    Google Scholar 

  10. Kajiya, F.; Tsujioka, K.; Goto, M.; Wada, Y.; Chen, X.; Nakai, M.; Tadaoka, S.; Hiramatsu, O.; Ogasawara, Y.; Mito, K.; Tomonaga, G. Functional characteristics of intramyocardial capacitance vessels during diastole in the dog. Circ. Res. 58:476–485; 1986.

    CAS  PubMed  Google Scholar 

  11. Klocke, F.J.; Mates, R.E.; Canty, J.M.; Ellis, A.K. Coronary pressure-flow relationships, controversial issues and probable implications. Circ. Res. 56:310–323; 1985.

    CAS  PubMed  Google Scholar 

  12. Lee, J.; Chambers, D.E.; Akizuki, S.; Downey, J.M. The role of vascular capacitance in the coronary arteries. Circ. Res. 55:751–762; 1984.

    CAS  PubMed  Google Scholar 

  13. Panerai, R.B.; Chamberlain, J.H.; Ayers, B. McA. Characterization of the extravascular component of coronary resistance by instantaneous pressure-flow relationships in the dog. Circ. Res. 45:378–390; 1979.

    CAS  PubMed  Google Scholar 

  14. Permutt, S.; Riley, R.I. Hemodynamics of collapsible vessels with tone: The vascular waterfall. J. Appl. Physiol. 18:924–932; 1963.

    CAS  PubMed  Google Scholar 

  15. Reneman, R.S.; Arts, R. Dynamic capacitance of epicardial coronary arteries in vivo. ASME J. Biomech. Eng. 107:29–33; 1985.

    CAS  Google Scholar 

  16. Spaan, J.A.E.; Breuls, N.P.W.; Laird, J.D. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ. Res. 49:584–593; 1981.

    CAS  PubMed  Google Scholar 

  17. Spaan, J.A.E. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ. Res. 56:293–304; 1985.

    CAS  PubMed  Google Scholar 

  18. Wiesner, T.F.; Levesque, M.J.; Rooz, E.; Nerem, R.M. Epicardial coronary blood flow including the presence of stenoses and aorto-coronary bypasses—II: Experimental comparison and parametric investigations. ASME J. Biomech. Eng. 110:144–149; 1988.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holenstein, R., Nerem, R.M. Parametric analysis of flow in the intramyocardial circulation. Ann Biomed Eng 18, 347–365 (1990). https://doi.org/10.1007/BF02364154

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364154

Keywords

Navigation