Skip to main content

Biomechanical Basis of Myocardium/Vessel Interaction: Implications for Pathophysiology and Therapy

  • Chapter
Structure-Based Mechanics of Tissues and Organs

Abstract

Ischemic heart disease is a major cause of morbidity and mortality worldwide. Interestingly, the onset of ischemia is transmurally heterogeneous, where the deeper (subendocardial) layers are more vulnerable to ischemia than the more superficial (subepicardial) ones (Hoffman 1987). This observation is especially puzzling in light of the opposite manifestation of coronary artery disease, which exclusively affects the epicardial coronary arteries, whereas intramural arteries are athero-protected (Geiringer 1951). Initiation of both atherosclerosis and ischemia depend highly on flow conditions; therefore, investigation of the hemodynamic determinants of both pathologies requires comprehension of the local coronary flow conditions, which are measured in the beating heart. Computer simulation is an attractive approach to study local coronary flow conditions. For hemodynamic simulation to be realistic, however, it must incorporate both a realistic description of the coronary network and the manner by which the contracting myocardium affects coronary flow—the myocardium/vessel interaction (MVI). Such an approach has several inherent challenges: First, the vast number of coronary blood vessels (Kaimovitz et al. 2005) is associated with an extensive computational cost to solve the network dynamic flow. To circumvent this difficulty, previous flow models (Bruinsma et al. 1988; Cornelissen et al. 2000; Flynn et al. 1992; Klocke et al. 1985; Manor et al. 1994) used lumped representations for the coronary vasculature. Although this approach is useful to reveal basic flow characteristics, it cannot address the physical relation between structure, vessel mechanics, and blood flow. Moreover, validation of a lumped model with experimental data is limited due to the inability of the model to describe flow conditions in specific vessels. Asecond challenge stems from paucity of experimental data required for both the flow model representation and for validation. Finally, the physical origins of the MVI, a key determinant in coronary flow analysis, are under a long-standing dispute and hitherto unknown. In fact, none of the mechanisms previously proposed (Downey and Kirk 1975; Krams et al. 1989a; Rabbany et al. 1989; Spaan et al. 1981; Zinemanas et al. 1994) to describe this mechanical interaction predict all of the characteristics of coronary flow (Westerhof et al. 2006), i.e., the blood flow velocities, pressures, and vascular diameters that correspond with the measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algranati D, Kassab GS, Lanir Y. Flow restoration post revascularization predicted by stenosis indexes: sensitivity to hemodynamic variability. Am J Physiol Heart Circ Physiol. 2013;305:H145–154.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Algranati D, Kassab GS, Lanir Y. Why is the subendocardium more vulnerable to ischemia? Anew paragidm. Am J Physiol Heart Circ Physiol. 2011;300:H1090–100.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Algranati D, Kassab KG, Lanir Y. Consistency of stenosis severity indices. Am J Physiol Heart Circ Physiol. 2012.

    Google Scholar 

  • Bache RJ, Schwartz JS. Effect of perfusion pressure distal to a coronary stenosis on transmural myocardial blood flow. Circulation. 1982;65:928–35.

    Article  PubMed  CAS  Google Scholar 

  • Baptista J, Arnese M, Roelandt JR, Fioretti P, Keane D, Escaned J, Boersma E, di Mario C, Serruys PW. Quantitative coronary angiography in the estimation of the functional significance of coronary stenosis: correlations with dobutamine-atropine stress test. J Am Coll Cardiol. 1994;23:1434–9.

    Article  PubMed  CAS  Google Scholar 

  • Boatwright RB, Downey HF, Bashour FA, Crystal GJ. Transmural variation in autoregulation of coronary blood flow in hyperperfused canine myocardium. Circ Res. 1980;47:599–609.

    Article  PubMed  CAS  Google Scholar 

  • Bruinsma P, Arts T, Dankelman J, Spaan JA. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Basic Res Cardiol. 1988;83:510–24.

    Article  PubMed  CAS  Google Scholar 

  • Buckberg GD, Fixler DE, Archie JP, Hoffman JI. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res. 1972;30:67–81.

    Article  PubMed  CAS  Google Scholar 

  • Caro CG. Discovery of the role of wall shear in atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:158–61.

    Article  PubMed  CAS  Google Scholar 

  • Caulfield JB, Borg TK. The collagen network of the heart. Lab Invest. 1979;40:364–72.

    PubMed  CAS  Google Scholar 

  • Chilian WM. Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ Res. 1991;69:561–70.

    Article  PubMed  CAS  Google Scholar 

  • Chilian WM, Layne SM. Coronary microvascular responses to reductions in perfusion pressure. Evidence for persistent arteriolar vasomotor tone during coronary hypoperfusion. Circ Res. 1990;66:1227–38.

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen AJ, Dankelman J, VanBavel E, Stassen HG, Spaan JA. Myogenic reactivity and resistance distribution in the coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol. 2000;278:H1490–9.

    PubMed  CAS  Google Scholar 

  • Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res. 1975;36:753–60.

    Article  PubMed  CAS  Google Scholar 

  • Fibich G, Lanir Y, Liron N. Mathematical model of blood flow in a coronary capillary. Am J Physiol. 1993;265:H1829–40.

    PubMed  CAS  Google Scholar 

  • Flynn AE, Coggins DL, Goto M, Aldea GS, Austin RE, Doucette JW, Husseini W, Hoffman JI. Does systolic subepicardial perfusion come from retrograde subendocardial flow? Am J Physiol. 1992;262:H1759–69.

    PubMed  CAS  Google Scholar 

  • Geiringer E. The mural coronary. Am Heart J. 1951;41:359–68.

    Article  PubMed  CAS  Google Scholar 

  • Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res. 1985;57:341–53.

    Article  PubMed  CAS  Google Scholar 

  • Hamza LH, Dang Q, Lu X, Mian A, Molloi S, Kassab GS. Effect of passive myocardium on the compliance of porcine coronary arteries. Am J Physiol Heart Circ Physiol. 2003;285:H653–60.

    Article  PubMed  CAS  Google Scholar 

  • Heineman FW, Grayson J. Transmural distribution of intramyocardial pressure measured by micropipette technique. Am J Physiol. 1985;249:H1216–23.

    PubMed  CAS  Google Scholar 

  • Hiramatsu O, Goto M, Yada T, Kimura A, Chiba Y, Tachibana H, Ogasawara Y, Tsujioka K, Kajiya F. In vivo observations of the intramural arterioles and venules in beating canine hearts. J Physiol. 1998;509(Pt 2):619–28.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hoffman JI. Transmural myocardial perfusion. Prog Cardiovasc Dis. 1987;29:429–64.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JI, Spaan JA. Pressure-flow relations in coronary circulation. Physiol Rev. 1990;70:331–90.

    PubMed  CAS  Google Scholar 

  • Hoffman JI, Baer RW, Hanley FL, Messina LM. Regulation of transmural myocardial blood flow. J Biomech Eng. 1985;107:2–9.

    Article  PubMed  CAS  Google Scholar 

  • Huo Y, Svendsen M, Choy JS, Zhang ZD, Kassab GS. A validated predictive model of coronary fractional flow reserve. J R Soc Interface. 2012;9(71):1325–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwanaga S, Ewing SG, Husseini WK, Hoffman JI. Changes in contractility and afterload have only slight effects on subendocardial systolic flow impediment. Am J Physiol. 1995;269:H1202–12.

    PubMed  CAS  Google Scholar 

  • Jacobs J, Algranati D, Lanir Y. Lumped flow modeling in dynamically loaded coronary vessels. JBiomech Eng. 2008;130:054504.

    Article  PubMed  CAS  Google Scholar 

  • Jones CJ, Kuo L, Davis MJ, DeFily DV, Chilian WM. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand. Circulation. 1995;91:1807–13.

    Article  PubMed  CAS  Google Scholar 

  • Kaimovitz B, Lanir Y, Kassab GS. Large-scale 3-D geometric reconstruction of the porcine coronary arterial vasculature based on detailed anatomical data. Ann Biomed Eng. 2005;33:1517–35.

    Article  PubMed  Google Scholar 

  • Kajiya F, Yada T, Hiramatsu O, Ogasawara Y, Inai Y, Kajiya M. Coronary microcirculation in the beating heart. Med Biol Eng Comput. 2008;46:411–9.

    Article  PubMed  Google Scholar 

  • Kassab GS, Fung YC. Topology and dimensions of pig coronary capillary network. Am J Physiol. 1994;267:H319–25.

    PubMed  CAS  Google Scholar 

  • Kassab GS, Imoto K, White FC, Rider CA, Fung YC, Bloor CM. Coronary arterial tree remodeling in right ventricular hypertrophy. Am J Physiol. 1993a;265:H366–75.

    PubMed  CAS  Google Scholar 

  • Kassab GS, Rider CA, Tang NJ, Fung YC. Morphometry of pig coronary arterial trees. Am J Physiol. 1993b;265:H350–65.

    PubMed  CAS  Google Scholar 

  • Kassab GS, Lin DH, Fung YC. Morphometry of pig coronary venous system. Am J Physiol. 1994;267:H2100–13.

    PubMed  CAS  Google Scholar 

  • Kassab GS, Le KN, Fung YC. A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data. Am J Physiol. 1999;277:H2158–66.

    PubMed  CAS  Google Scholar 

  • Kini AS, Kim MC, Moreno PR, Krishnan P, Ivan OC, Sharma SK. Comparison of coronary flow reserve and fractional flow reserve in patients with versus without diabetes mellitus and having elective percutaneous coronary intervention and abciximab therapy (from the PREDICT Trial). Am J Cardiol. 2008;101:796–800.

    Article  PubMed  Google Scholar 

  • Klocke FJ, Mates RE, Canty Jr JM, Ellis AK. Coronary pressure-flow relationships. Controversial issues and probable implications. Circ Res. 1985;56:310–23.

    Article  PubMed  CAS  Google Scholar 

  • Kouwenhoven E, Vergroesen I, Han Y, Spaan JA. Retrograde coronary flow is limited by time-varying elastance. Am J Physiol. 1992;263:H484–90.

    PubMed  CAS  Google Scholar 

  • Krams R, Sipkema P, Westerhof N. Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol. 1989a;257:H1471–9.

    PubMed  CAS  Google Scholar 

  • Krams R, Sipkema P, Zegers J, Westerhof N. Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol. 1989b;257:H1936–44.

    PubMed  CAS  Google Scholar 

  • Kuo L, Davis MJ, Chilian WM. Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am J Physiol. 1988;255:H1558–62.

    PubMed  CAS  Google Scholar 

  • Kuo L, Davis MJ, Chilian WM. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation. 1995;92:518–25.

    Article  PubMed  CAS  Google Scholar 

  • Liao JC, Kuo L. Interaction between adenosine and flow-induced dilation in coronary microvascular network. Am J Physiol. 1997;272:H1571–81.

    PubMed  CAS  Google Scholar 

  • Loutzenhiser R, Bidani A, Chilton L. Renal myogenic response: kinetic attributes and physiological role. Circ Res. 2002;90:1316–24.

    Article  PubMed  CAS  Google Scholar 

  • Manor D, Sideman S, Dinnar U, Beyar R. Analysis of flow in coronary epicardial arterial tree and intramyocardial circulation. Med Biol Eng Comput. 1994;32:S133–43.

    Article  PubMed  CAS  Google Scholar 

  • Marzilli M, Goldstein S, Sabbah HN, Lee T, Stein PD. Modulating effect of regional myocardial performance on local myocardial perfusion in the dog. Circ Res. 1979;45:634–41.

    Article  PubMed  CAS  Google Scholar 

  • Mihailescu LS, Abel FL. Intramyocardial pressure gradients in working and nonworking isolated cat hearts. Am J Physiol. 1994;266:H1233–41.

    PubMed  CAS  Google Scholar 

  • Mittal N, Zhou Y, Linares C, Ung S, Kaimovitz B, Molloi S, Kassab GS. Analysis of blood flow in the entire coronary arterial tree. Am J Physiol Heart Circ Physiol. 2005;289:H439–46.

    Article  PubMed  CAS  Google Scholar 

  • Moir TW. Subendocardial distribution of coronary blood flow and the effect of antianginal drugs. Circ Res. 1972;30:621–7.

    Article  PubMed  CAS  Google Scholar 

  • Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation. 1993;87:1354–67.

    Article  PubMed  CAS  Google Scholar 

  • Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P. Resistance to blood flow in microvessels in vivo. Circ Res. 1994;75:904–15.

    Article  PubMed  CAS  Google Scholar 

  • Rabbany SY, Kresh JY, Noordergraaf A. Intramyocardial pressure: interaction of myocardial fluid pressure and fiber stress. Am J Physiol. 1989;257:H357–64.

    PubMed  CAS  Google Scholar 

  • Rabbany SY, Funai JT, Noordergraaf A. Pressure generation in a contracting myocyte. Heart Vessels. 1994;9:169–74.

    Article  PubMed  CAS  Google Scholar 

  • Robicsek F, Thubrikar MJ. The freedom from atherosclerosis of intramyocardial coronary arteries: reduction of mural stress–a key factor. Eur J Cardiothorac Surg. 1994;8:228–35.

    Article  PubMed  CAS  Google Scholar 

  • Rogers PA, Kiyooka T, Chilian WM. Is there a need for another model on the pulsatile nature of coronary blood flow? Am J Physiol Heart Circ Physiol. 2006;291:H1034–5.

    Article  PubMed  CAS  Google Scholar 

  • Scaramucci J. Theoremata familiaria viros eruditos consulentia de variis physico-medicis lucubrationibus juxta leges mecanicas. Apud Joannem Baptistam Bustum. 1696;70–81.

    Google Scholar 

  • Siebes M, Chamuleau SA, Meuwissen M, Piek JJ, Spaan JA. Influence of hemodynamic conditions on fractional flow reserve: parametric analysis of underlying model. Am J Physiol Heart Circ Physiol. 2002;283:H1462–70.

    Article  PubMed  CAS  Google Scholar 

  • Siebes M, Verhoeff BJ, Meuwissen M, de Winter RJ, Spaan JA, Piek JJ. Single-wire pressure and flow velocity measurement to quantify coronary stenosis hemodynamics and effects of percutaneous interventions. Circulation. 2004;109:756–62.

    Article  PubMed  Google Scholar 

  • Spaan JA. Coronary blood flow: mechanics, distribution, and control. Dordrecht: Kluwer; 1991.

    Book  Google Scholar 

  • Spaan JA. Mechanical determinants of myocardial perfusion. Basic Res Cardiol. 1995;90:89–102.

    Article  PubMed  CAS  Google Scholar 

  • Spaan JA, Breuls NP, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res. 1981;49:584–93.

    Article  PubMed  CAS  Google Scholar 

  • Spaan JA, Piek JJ, Hoffman JI, Siebes M. Physiological basis of clinically used coronary hemodynamic indices. Circulation. 2006;113:446–55.

    Article  PubMed  Google Scholar 

  • Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol. 1979;236:H498–505.

    PubMed  CAS  Google Scholar 

  • Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  PubMed  CAS  Google Scholar 

  • van den Wijngaard JP, Kolyva C, Siebes M, Dankelman J, van Gemert MJ, Piek JJ, Spaan JA. Model prediction of subendocardial perfusion of the coronary circulation in the presence of an epicardial coronary artery stenosis. Med Biol Eng Comput. 2008;46:421–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • VanTeeffelen JW, Merkus D, Bos LJ, Vergroesen I, Spaan JA. Impairment of contraction increases sensitivity of epicardial lymph pressure for left ventricular pressure. Am J Physiol. 1998;274:H187–92.

    PubMed  CAS  Google Scholar 

  • Vis MA, Sipkema P, Westerhof N. Modeling pressure-area relations of coronary blood vessels embedded in cardiac muscle in diastole and systole. Am J Physiol. 1995;268:H2531–43.

    PubMed  CAS  Google Scholar 

  • Vis MA, Bovendeerd PH, Sipkema P, Westerhof N. Effect of ventricular contraction, pressure, and wall stretch on vessels at different locations in the wall. Am J Physiol. 1997;272:H2963–75.

    PubMed  CAS  Google Scholar 

  • Westerhof N. Physiological hypotheses–intramyocardial pressure. A new concept, suggestions for measurement. Basic Res Cardiol. 1990;85:105–19.

    Article  PubMed  CAS  Google Scholar 

  • Westerhof N, Boer C, Lamberts RR, Sipkema P. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev. 2006;86:1263–308.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa H, Chikamori T, Tanaka N, Hatano T, Morishima T, Hida S, Iino H, Amaya K, Takazawa K, Yamashina A. Correlation between thallium-201 myocardial perfusion defects and the functional severity of coronary artery stenosis as assessed by pressure-derived myocardial fractional flow reserve. Circ J. 2002;66:1105–9.

    Article  PubMed  Google Scholar 

  • Young DF. Fluid mechanics of arterial stenoses. J Biomech Eng. 1979;101:157–75.

    Article  Google Scholar 

  • Zhang W, Liu Y, Kassab GS. Viscoelasticity reduces the dynamic stresses and strains in the vessel wall: implications for vessel fatigue. Am J Physiol Heart Circ Physiol. 2007;293:H2355–60.

    Article  PubMed  CAS  Google Scholar 

  • Zinemanas D, Beyar R, Sideman S. Relating mechanics, blood flow and mass transport in the cardiac muscle. Int J Heat Mass Transf. 1994;37:191–205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan S. Kassab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Algranati, D., Kassab, G.S., Lanir, Y. (2016). Biomechanical Basis of Myocardium/Vessel Interaction: Implications for Pathophysiology and Therapy. In: Kassab, G., Sacks, M. (eds) Structure-Based Mechanics of Tissues and Organs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7630-7_10

Download citation

Publish with us

Policies and ethics