Skip to main content

Coronary Blood Flow and Myocardial Ischemia

  • Chapter
  • First Online:
Essential Cardiology

Abstract

This chapter reviews coronary flow regulation in normal and pathophysiological states. Under normal conditions, the heart maximally extracts oxygen and as a result, increases in oxygen demand are met by proportionate increases in coronary blood flow. Mechanisms responsible for the regulation of coronary resistance in the microcirculation include metabolic, myogenic, and flow-dependent resistance vessel control. There is substantial vasodilator reserve in the normal heart such that, in the presence of an epicardial coronary stenosis, local vasodilation decreases vascular resistance and autoregulates flow at the normal level as coronary pressure falls. As stenosis severity increases, however, flow reserve is exhausted and the subendocardium becomes vulnerable to reversible ischemia during increased myocardial oxygen demands. When ischemia is severe and prolonged following a total coronary occlusion, irreversible myocyte injury develops leading to a wave front of myocardial necrosis that extends from subendocardium to subepicardium. When ischemia is brief (as in angina), myocardial function remains depressed after flow normalizes indicative of myocardial stunning. Repetitive reversible ischemia leads to persistent dysfunction followed by intrinsic adaptive responses characteristic of hibernating myocardium. These protect the heart from irreversible injury and acute stunning at the expense of producing chronically depressed but reversible contractile dysfunction. A thorough understanding of coronary physiology and myocardial ischemia is essential in the management of patients with coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canty Jr JM, Brooks A. Phasic volumetric coronary venous outflow patterns in conscious dogs. Am J Physiol. 1990;258:H1457–63.

    PubMed  Google Scholar 

  2. Feigl EO. Coronary physiology. Physiol Rev. 1983;63:1–205.

    PubMed  CAS  Google Scholar 

  3. Duncker DJ, Bache RJ, Merkus D. Regulation of coronary resistance vessel tone in response to exercise. J Mol Cell Cardiol. 2012;52:802–13.

    PubMed  CAS  Google Scholar 

  4. Klocke FJ. Coronary blood flow in man. Prog Cardiovasc Dis. 1976;XIX:117–66.

    Google Scholar 

  5. Canty Jr JM. Coronary blood flow and myocardial ischemia. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease. 9th ed. Philadelphia: Elsevier; 2012. p. 1049–75.

    Google Scholar 

  6. Canty Jr JM. Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res. 1988;63:821–36.

    PubMed  Google Scholar 

  7. Canty Jr JM, Giglia J, Kandath D. Effect of tachycardia on regional function and transmural myocardial perfusion during graded coronary pressure reduction in conscious dogs. Circulation. 1990;82:1815–25.

    PubMed  Google Scholar 

  8. Hoffman JIE. Transmural myocardial perfusion. Prog Cardiovasc Dis. 1987;29:429–64.

    PubMed  CAS  Google Scholar 

  9. Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML. Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol. 1989;256:H383–90.

    PubMed  CAS  Google Scholar 

  10. Hoffman JIE, Spaan JAE. Pressure-flow relations in coronary circulation. Physiol Rev. 1990;70:331–90.

    PubMed  CAS  Google Scholar 

  11. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol. 1986;251:H779–88.

    PubMed  CAS  Google Scholar 

  12. Miller FJ, Dellsperger KC, Gutterman DD. Myogenic constriction of human coronary arterioles. Am J Physiol Heart Circ Physiol. 1997;273:H257–64.

    CAS  Google Scholar 

  13. Miura H, Wachtel RE, Liu Y, Loberiza Jr FR, Saito T, Miura M, et al. Flow-induced dilation of human coronary arterioles: important role of Ca2+-activated K+ channels. Circulation. 2001;103:1992–8.

    PubMed  CAS  Google Scholar 

  14. Kanatsuka H, Lamping KG, Eastham CL, Marcus ML. Heterogeneous changes in epimyocardial microvascular size during graded coronary stenosis. Evidence of the microvascular site for autoregulation. Circ Res. 1990;66:389–96.

    PubMed  CAS  Google Scholar 

  15. Kuo L, Davis MJ, Chilian WM. Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol. 1990;259:H1063–70.

    PubMed  CAS  Google Scholar 

  16. Kuo L, Davis MJ, Chilian WM. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation. 1995;92:518–25.

    PubMed  CAS  Google Scholar 

  17. Dube S, Canty Jr JM. Shear-stress induced vasodilation in porcine coronary conduit arteries is independent of nitric oxide release. Am J Physiol. 2001;280:H2581–90.

    CAS  Google Scholar 

  18. Beyer AM, Gutterman DD. Regulation of the human coronary microcirculation. J Mol Cell Cardiol. 2012;52:814–21.

    PubMed  CAS  Google Scholar 

  19. Duncker DJ, Bache RJ. Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther. 2000;86:87–110.

    PubMed  CAS  Google Scholar 

  20. Deussen A, Ohanyan V, Jannasch A, Yin L, Chilian W. Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol. 2012;52:794–801.

    PubMed  CAS  Google Scholar 

  21. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009–86.

    PubMed  CAS  Google Scholar 

  22. Sato A, Terata K, Miura H, Toyama K, Loberiza Jr FR, Hatoum OA, et al. Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am J Physiol Heart Circ Physiol. 2005;288:H1633–40.

    PubMed  CAS  Google Scholar 

  23. Jones CJ, Kuo L, Davis MJ, DeFily DV, Chilian WM. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand. Circulation. 1995;91:1807–13.

    PubMed  CAS  Google Scholar 

  24. Kanatsuka H, Lamping KG, Eastham CL, Dellsperger KC, Marcus ML. Comparison of the effects of increased myocardial oxygen consumption and adenosine on the coronary microvascular resistance. Circ Res. 1989;65:1296–305.

    PubMed  CAS  Google Scholar 

  25. Tune JD, Richmond KN, Gorman MW, Feigl EO. Control of coronary blood flow during exercise. Exp Biol Med. 2002;227:238–50.

    CAS  Google Scholar 

  26. Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev. 1997;77:1165–232.

    PubMed  CAS  Google Scholar 

  27. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.

    PubMed  CAS  Google Scholar 

  28. Palmer RM, Rees DD, Ashton DS, Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun. 1988;153:1251–6.

    PubMed  CAS  Google Scholar 

  29. Altman JD, Kinn J, Duncker DJ, Bache RJ. Effect of inhibition of nitric oxide formation on coronary blood flow during exercise in the dog. Cardiovasc Res. 1994;28:119–24.

    PubMed  CAS  Google Scholar 

  30. Kuo L, Chilian WM, Davis MJ. Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels. Am J Physiol. 1991;261:H1706–15.

    PubMed  CAS  Google Scholar 

  31. Parent R, Paré R, Lavallée M. Contribution of nitric oxide to dilation of resistance coronary vessels in conscious dogs. Am J Physiol. 1992;262:H10–6.

    PubMed  CAS  Google Scholar 

  32. Yamabe H, Okumura K, Ishizaka H, Tsuchiya T, Yasue H. Role of endothelium-derived nitric oxide in myocardial reactive hyperemia. Am J Physiol. 1993;263:H8–14.

    Google Scholar 

  33. Ishibashi Y, Bache RJ, Zhang J. ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise. Circ Res. 1998;82:346–59.

    PubMed  CAS  Google Scholar 

  34. Bernstein RD, Ochoa FY, Xu X, Forfia P, Shen W, Thompson CI, et al. Function and production of nitric oxide in the coronary circulation of the conscious dog during exercise. Circ Res. 1996;79:840–8.

    PubMed  CAS  Google Scholar 

  35. Lamontagne D, Konig A, Bassenge E, Busse R. Prostacyclin and nitric oxide contribute to the vasodilator action of acetylcholine and bradykinin in the intact rabbit coronary bed. J Cardiovasc Pharmacol. 1992;20:652–7.

    PubMed  CAS  Google Scholar 

  36. Altman JD, Klassen CL, Bache RJ. Cyclooxygenase blockade limits blood flow to collateral-dependent myocardium during exercise. Cardiovasc Res. 1995;30:697–704.

    PubMed  CAS  Google Scholar 

  37. Gutterman DD, Miura H, Liu Y. Redox modulation of vascular tone: focus of potassium channel mechanisms of dilation. Arterioscler Thromb Vasc Biol. 2005;25:671–8.

    PubMed  CAS  Google Scholar 

  38. Saitoh S, Zhang C, Tune JD, Potter B, Kiyooka T, Rogers PA, et al. Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol. 2006;26:2614–21.

    PubMed  CAS  Google Scholar 

  39. Merkus D, Sorop O, Houweling B, Boomsma F, van den Meiracker AH, Duncker DJ. Metabolites of cytochrome P450 2C9 are not essential for the regulation of coronary vasomotor tone in swine (Abstract). FASEB J. 2006;20:A1399.

    Google Scholar 

  40. Luscher TF, Barton M. Endothelins and endothelin receptor antagonists: therapeutic considerations for a novel class of cardiovascular drugs. Circulation. 2000;102:2434–40.

    PubMed  CAS  Google Scholar 

  41. Miyauchi T, Masaki T. Pathophysiology of endothelin in the cardiovascular system. Annu Rev Physiol. 1999;61:391–415.

    PubMed  CAS  Google Scholar 

  42. Stauffer BL, Westby CM, DeSouza CA. Endothelin-1, aging and hypertension. Curr Opin Cardiol. 2008;23:350–5.

    PubMed  Google Scholar 

  43. Halcox JP, Nour KR, Zalos G, Quyyumi AA. Endogenous endothelin in human coronary vascular function: differential contribution of endothelin receptor types A and B. Hypertension. 2007;49:1134–41.

    PubMed  CAS  Google Scholar 

  44. Berwick ZC, Dick GM, Tune JD. Heart of the matter: coronary dysfunction in metabolic syndrome. J Mol Cell Cardiol. 2012;52:848–56.

    PubMed  CAS  Google Scholar 

  45. Nguyen A, Thorin-Trescases N, Thorin E. Working under pressure: coronary arteries and the endothelin system. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1188–94.

    PubMed  CAS  Google Scholar 

  46. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315:1046–51.

    PubMed  CAS  Google Scholar 

  47. Heusch G, Baumgart D, Camici P, Chilian W, Gregorini L, Hess O, et al. α-adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation. 2000;101:689–94.

    PubMed  CAS  Google Scholar 

  48. Gorman MW, Tune JD, Richmond KN, Feigl EO. Quantitative analysis of feedforward sympathetic coronary vasodilation in exercising dogs. J Appl Physiol. 2000;89:1903–11.

    PubMed  CAS  Google Scholar 

  49. Gould KL. Does coronary flow trump coronary anatomy? J Am Coll Cardiol Img. 2009;2:1009–23.

    Google Scholar 

  50. van de Hoef TP, Nolte F, Rolandi MC, Piek JJ, van den Wijngaard J, Spaan JAE, et al. Coronary pressure-flow relations as basis for the understanding of coronary physiology. J Mol Cell Cardiol. 2012;52:786–93.

    PubMed  Google Scholar 

  51. Klocke FJ. Measurements of coronary blood flow and degree of stenosis: current clinical implications and continuing uncertainties. J Am Coll Cardiol. 1983;1:31–41.

    PubMed  CAS  Google Scholar 

  52. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol. 1990;15:459–74.

    PubMed  CAS  Google Scholar 

  53. Kern MJ, Lerman A, Bech JW, De Bruyne B, Eeckhout E, Fearon WF, et al. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory. A scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation. 2006;114:1321–41.

    PubMed  Google Scholar 

  54. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    PubMed  CAS  Google Scholar 

  55. Spaan JA, Piek JJ, Hoffman JI, Siebes M. Physiological basis of clinically used coronary hemodynamic indices. Circulation. 2006;113:446–55.

    PubMed  Google Scholar 

  56. Meier P, Gloekler S, Zbinden R, Beckh S, de Marchi SF, Zbinden S, et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation. 2007;116:975–83.

    PubMed  Google Scholar 

  57. Schaper W. Collateral circulation: past and present. Basic Res Cardiol. 2009;104:5–21.

    PubMed  CAS  Google Scholar 

  58. Chilian WM, Penn MS, Pung YF, Dong F, Mayorga M, Ohanyan V, et al. Coronary collateral growth-back to the future. J Mol Cell Cardiol. 2012;52:905–11.

    PubMed  CAS  Google Scholar 

  59. Teunissen PF, Horrevoets AJ, van Royen N. The coronary collateral circulation: genetic and environmental determinants in experimental models and humans. J Mol Cell Cardiol. 2012;52:897–904.

    PubMed  CAS  Google Scholar 

  60. Matsunaga T, Warltier DC, Weihrauch DW, Moniz M, Tessmer J, Chilian WM. Ischemia-induced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide. Circulation. 2000;102:3098–103.

    PubMed  CAS  Google Scholar 

  61. Altman JD, Dulas D, Pavek T, Bache RJ. Effect of aspirin on coronary collateral blood flow. Circulation. 1993;87:583–9.

    PubMed  CAS  Google Scholar 

  62. Mills I, Fallon JT, Wrenn D, Sasken H, Gray W, Bier J, et al. Adaptive responses of coronary circulation and myocardium to chronic reduction in perfusion pressure and flow. Am J Physiol Heart Circ Physiol. 1994;266:H447–57.

    CAS  Google Scholar 

  63. Hong H, Aksenov S, Guan X, Fallon JT, Waters D, Chen C. Remodeling of small intramyocardial coronary arteries distal to a severe epicardial coronary artery stenosis. Arterioscler Thromb Vasc Biol. 2002;22:2059–65.

    PubMed  CAS  Google Scholar 

  64. Griffin KL, Woodman CR, Price EM, Laughlin MH, Parker JL. Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training. Circulation. 2001;104:1393–8.

    PubMed  CAS  Google Scholar 

  65. Sorop O, Merkus D, de Beer VJ, Houweling B, Pistea A, McFalls EO, et al. Functional and structural adaptations of coronary microvessels distal to a chronic coronary artery stenosis. Circ Res. 2008;102:795–803.

    PubMed  CAS  Google Scholar 

  66. Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation. 2001;104:2981–9.

    PubMed  CAS  Google Scholar 

  67. Heusch G. Hibernating myocardium. Physiol Rev. 1998;78:1055–85.

    PubMed  CAS  Google Scholar 

  68. Downey JM, Cohen MV. Reducing infarct size in the setting of acute myocardial infarction. Prog Cardiovasc Dis. 2006;48:363–71.

    PubMed  Google Scholar 

  69. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.

    PubMed  CAS  Google Scholar 

  70. Sanada S, Komuro I, Kitakaze M. Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol. 2011;301:H1723–41.

    PubMed  CAS  Google Scholar 

  71. Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation. 2001;104:3158–67.

    PubMed  CAS  Google Scholar 

  72. Vinten-Johansen J, Yellon DM, Opie LH. Postconditioning: a simple, clinically applicable procedure to improve revascularization in acute myocardial infarction. Circulation. 2005;112:2085–8.

    PubMed  Google Scholar 

  73. Dorn 2nd GW, Diwan A. The rationale for cardiomyocyte resuscitation in myocardial salvage. J Mol Med. 2008;86:1085–95.

    PubMed  Google Scholar 

  74. Dorn 2nd GW. Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res. 2009;81:465–73.

    PubMed  CAS  Google Scholar 

  75. Heyndrickx GR, Baig H, Nellens P, Leusen I, Fishbein MC, Vatner SF. Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physiol. 1978;234:H653–9.

    PubMed  CAS  Google Scholar 

  76. Homans DC, Pavek T, Laxson DD, Bache RJ. Recovery of transmural and subepicardial wall thickening after subendocardial infarction. J Am Coll Cardiol. 1994;24:1109–16.

    PubMed  CAS  Google Scholar 

  77. Thaulow E, Guth BD, Heusch G, Gilpin E, Schulz R, Kroeger K, et al. Characteristics of regional myocardial stunning after exercise in dogs with chronic coronary stenosis. Am J Physiol. 1989;257:H113–9.

    PubMed  CAS  Google Scholar 

  78. Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 1999;79:609–34.

    PubMed  CAS  Google Scholar 

  79. Kudej RK, Ghaleh B, Sato N, Shen YT, Bishop SP, Vatner SF. Ineffective perfusion-contraction matching in conscious, chronically instrumented pigs with an extended period of coronary stenosis. Circ Res. 1998;82:1199–205.

    PubMed  CAS  Google Scholar 

  80. Schulz R, Post H, Neumann T, Gres P, Lüss H, Heusch G. Progressive loss of perfusion-contraction matching during sustained moderate ischemia in pigs. Am J Physiol Heart Circ Physiol. 2001;280:H1945–53.

    PubMed  CAS  Google Scholar 

  81. Pantely GA, Malone SA, Rhen WS, Anselone CG, Arai A, Bristow J, et al. Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia. Circ Res. 1990;67:1481–93.

    PubMed  CAS  Google Scholar 

  82. Matsuzaki M, Gallagher KP, Kemper WS, White F, Ross Jr J. Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion. Circulation. 1983;68:170–82.

    PubMed  CAS  Google Scholar 

  83. Rahimtoola SH, Dilsizian V, Kramer CM, Marwick TH, Vanoverschelde JL. Chronic ischemic left ventricular dysfunction: from pathophysiology to imaging and its integration into clinical practice. JACC Cardiovasc Imaging. 2008;1:536–55.

    PubMed  Google Scholar 

  84. Fallavollita JA, Perry BJ, Canty Jr JM. 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium: evidence for transmural variations in chronic hibernating myocardium. Circulation. 1997;95:1900–9.

    PubMed  CAS  Google Scholar 

  85. Fallavollita JA, Canty Jr JM. Differential 18F-2-deoxyglucose uptake in viable dysfunctional myocardium with normal resting perfusion: evidence for chronic stunning in pigs. Circulation. 1999;99:2798–805.

    PubMed  CAS  Google Scholar 

  86. Vogt AM, Elsasser A, Nef H, Bode C, Kubler W, Schaper J. Increased glycolysis as protective adaptation of energy depleted, degenerating human hibernating myocardium. Mol Cell Biochem. 2003;242:101–7.

    PubMed  CAS  Google Scholar 

  87. Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G, et al. Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ Res. 2003;92:1233–9.

    PubMed  CAS  Google Scholar 

  88. Page B, Young R, Iyer V, Suzuki G, Lis M, Korotchkina K, et al. Persistent regional downregulation in mitochondrial enzymes and upregulation of stress proteins in swine with chronic hibernating myocardium. Circ Res. 2008;102:103–12.

    PubMed  CAS  Google Scholar 

  89. Hu Q, Suzuki G, Young RF, Page BJ, Fallavollita JA, Canty Jr JM. Reductions in mitochondrial O(2) consumption and preservation of high-energy phosphate levels after simulated ischemia in chronic hibernating myocardium. Am J Physiol Heart Circ Physiol. 2009;297:H223–32.

    PubMed  CAS  Google Scholar 

  90. Ausma J, Schaart G, Thon F, Shivalkar B, Flameng W, Depr C, et al. Chronic ischemic viable myocardium in man: aspects of dedifferentiation. Cardiovasc Pathol. 1995;4:29–37.

    Google Scholar 

  91. Vanoverschelde J-L, Wijns W, Borgers M, Heyndrickx G, Depre C, Flameng W, et al. Chronic myocardial hibernation in humans. From bedside to bench. Circulation. 1997;95:1961–71.

    PubMed  CAS  Google Scholar 

  92. Elsasser A, Schlepper M, Klovekorn WP, Cai W, Zimmermann R, Muller KD, et al. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation. 1997;96:2920–31.

    PubMed  CAS  Google Scholar 

  93. Elsasser A, Vogt AM, Nef H, Kostin S, Mollmann H, Skwara W, et al. Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol. 2004;43:2191–9.

    PubMed  Google Scholar 

  94. Lim H, Fallavollita JA, Hard R, Kerr CW, Canty Jr JM. Profound apoptosis-mediated regional myocyte loss and compensatory hypertrophy in pigs with hibernating myocardium. Circulation. 1999;100:2380–6.

    PubMed  CAS  Google Scholar 

  95. Angelini A, Maiolino G, La Canna G, Ceconi C, Calabrese F, Pettenazzo E, et al. Relevance of apoptosis in influencing recovery of hibernating myocardium. Eur J Heart Fail. 2007;9:377–83.

    PubMed  Google Scholar 

  96. Suzuki G, Lee TC, Fallavollita JA, Canty Jr JM. Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle. Circ Res. 2005;96:767–75.

    PubMed  CAS  Google Scholar 

  97. Suzuki G, Iyer V, Cimato T, Canty Jr JM. Pravastatin improves function in hibernating myocardium by mobilizing CD133+ and cKit+hematopoietic progenitor cells and promoting myocytes to reenter the growth phase of the cardiac cell cycle. Circ Res. 2009;104:255–64.

    PubMed  CAS  Google Scholar 

  98. Suzuki G, Iyer V, Lee TC, Canty Jr JM. Autologous mesenchymal stem cells mobilize cKit+ and CD133+ bone marrow progenitor cells and improve regional function in hibernating myocardium. Circ Res. 2011;109:1044–54.

    PubMed  CAS  Google Scholar 

Recommended Reading

  • Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 1999;79:609–34.

    PubMed  CAS  Google Scholar 

  • Canty Jr JM. Coronary blood flow and myocardial ischemia. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease. 9th ed. Philadelphia: Elsevier; 2012. p. 1049–75.

    Google Scholar 

  • Duncker DJ, Bache RJ. Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther. 2000;86:87–110.

    PubMed  CAS  Google Scholar 

  • Klocke FJ. Measurements of coronary blood flow and degree of stenosis: current clinical implications and continuing uncertainties. J Am Coll Cardiol. 1983;1:31–41.

    PubMed  CAS  Google Scholar 

  • Spaan JA, Piek JJ, Hoffman JI, Siebes M. Physiological basis of clinically used coronary hemodynamic indices. Circulation. 2006;113:446–55.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Canty Jr. MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weil, B.R., Canty, J.M. (2013). Coronary Blood Flow and Myocardial Ischemia. In: Rosendorff, C. (eds) Essential Cardiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6705-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6705-2_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6704-5

  • Online ISBN: 978-1-4614-6705-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics