Skip to main content

Structure–Function Relations in the Coronary Vasculature

  • Chapter
Structure-Based Mechanics of Tissues and Organs

Abstract

The function of the coronary system is to deliver blood to the capillary network, to nourish the myocardium and to autoregulate coronary blood flow. The coronary vessels run through cyclically contracting, cardiac muscle. Consequently, intramyocardial pressures have a major influence on vascular transmural pressure and, therefore, on the flow. It is widely acknowledged that the distribution of coronary blood is spatially heterogeneous. Aside from the interaction between myocardial contraction and flow, causing impediment at the local level, the stochastic nature of the coronary tree geometry contributes to the inhomogeneity of the blood flow distribution. Additionally, variations of flow exist from epicardium to endocardium. Flow heterogeneity is further enhanced in pathologies, such as ischemia, which induces vulnerability of the subendocardium to ischemia. The coronary perfusion distribution as well as local coronary flow is difficult to measure, especially in the endocardium. Hence it is not yet fully understood as to what the specific effects cardiac contraction, local neurogenic controls, cardiac and vascular pathologies, and specific therapeutic modalities (e.g., drugs) have on the extent and distribution of coronary perfusion. For this reason, simulation is an attractive methodological alternative. Accordingly, realistic analysis of the flow distribution must be carried out within a framework of a realistic three-dimensional (3D) representation of the coronary geometry and its biological variability. Recent morphological studies facilitate realistic reconstructions of the coronary vasculature to serve as a foundation for simulation of the flow in the entire coronary system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansari A. Anatomy and clinical significance of ventricular Thebesian veins. Clin Anat. 2001;14:102–10.

    Article  PubMed  CAS  Google Scholar 

  • Bales GS. Great cardiac vein variations. Clin Anat. 2004;17:436–43.

    Article  PubMed  Google Scholar 

  • Baroldi G, Scomazzoni, G. Coronary circulation in the normal and the pathologic heart. Washington, DC: Office of the surgeon general. Department of the army; 1967.

    Google Scholar 

  • Bassingthwaighte JB, Yipintsoi T, Harvey RB. Microvasculature of the dog left ventricular myocardium. Microvasc Res. 1974;7:229–49.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bassingthwaighte JB, King RB, Roger SA. Fractal nature of regional myocardial blood flow heterogeneity. Circ Res. 1989;65:578–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beard DA, Bassingthwaighte JB. The fractal nature of myocardial blood flow emerges from a whole-organ model of arterial network. J Vasc Res. 2000;37:282–96.

    Article  PubMed  CAS  Google Scholar 

  • Berne R, Rubio R. Coronary circulation. In: Berne RM, editor. Handbook of physiology. Section2. The cardiovascular system, The heart, vol. 1. Baltimore: American Physiological Society; 1979.

    Google Scholar 

  • Bruinsma P, Arts T, Dankelman J, Spaan JA. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Basic Res Cardiol. 1988;83:510–24.

    Article  PubMed  CAS  Google Scholar 

  • Chadwick RS, Tedgui A, Michel JB, Ohayon J, Levy BI. Phasic regional myocardial inflow and outflow: comparison of theory and experiments. Am J Physiol. 1990;258:H1687–98.

    PubMed  CAS  Google Scholar 

  • Chilian WM. Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ Res. 1991;69:561–70.

    Article  PubMed  CAS  Google Scholar 

  • Chilian WM, Marcus ML. Coronary venous outflow persists after cessation of coronary arterial inflow. Am J Physiol. 1984;247:H984–90.

    PubMed  CAS  Google Scholar 

  • Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML. Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol. 1989;256:H383–90.

    PubMed  CAS  Google Scholar 

  • Choy JS, Kassab GS. Wall thickness of coronary vessels varies transmurally in the LV but not the RV: implications for local stress distribution. Am J Physiol Heart Circ Physiol. 2009;297:H750–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crystal GJ, Downey HF, Bashour FA. Small vessel and total coronary blood volume during intracoronary adenosine. Am J Physiol. 1981;241:H194–201.

    PubMed  CAS  Google Scholar 

  • Feigl EO. Coronary physiology. Physiol Rev. 1983;63:1–205.

    PubMed  CAS  Google Scholar 

  • Fulton W. Morphometry of the myocardial circulation in microcirculation of the heart: theoretical and clinical problems. New York: Springer; 1982.

    Google Scholar 

  • Gray H, Williams PL, Bannister LH. Gray’s anatomy: the anatomical basis of medicine and surgery. New York: Churchill Livingstone; 1995.

    Google Scholar 

  • Grayson J. Functional morphology of the coronary circulation in the coronary artery. New York: Oxford University Press; 1982.

    Google Scholar 

  • Hester RL, Hammer LW. Venular-arteriolar communication in the regulation of blood flow. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1280–5.

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu O, Goto M, Yada T, Kimura A, Chiba Y, Tachibana H, Ogasawara Y, Tsujioka K, Kajiya F. In vivo observations of the intramural arterioles and venules in beating canine hearts. J Physiol. 1998;509(Pt 2):619–28.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hoffman JI, Spaan JA. Pressure-flow relations in coronary circulation. Physiol Rev. 1990;70:331–90.

    PubMed  CAS  Google Scholar 

  • Howe BB, Winbury MM. Effect of pentrinitrol, nitroglycerin and propranolol on small vessel blood content of the canine myocardium. J Pharmacol Exp Ther. 1973;187:465–74.

    PubMed  CAS  Google Scholar 

  • Huo Y, Kassab GS. A hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree. Am J Physiol Heart Circ Physiol. 2007;292:H2623–33.

    Article  PubMed  CAS  Google Scholar 

  • Huo Y, Kassab GS. The scaling of blood flow resistance: from a single vessel to the entire distal tree. Biophys J. 2009;96:339–46.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huo Y, Kassab GS. Intraspecific scaling laws of vascular trees. J R Soc Interface. 2012;9:190–200.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huo Y, Linares CO, Kassab GS. Capillary perfusion and wall shear stress are restored in the coronary circulation of hypertrophic right ventricle. Circ Res. 2007;100:273–83.

    Article  PubMed  CAS  Google Scholar 

  • Huo Y, Kaimovitz B, Lanir Y, Wischgoll T, Hoffman JI, Kassab GS. Biophysical model of the spatial heterogeneity of myocardial flow. Biophys J. 2009;96:4035–43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hutchins GM, Moore GW, Hatton EV. Arterial-venous relationships in the human left ventricular myocardium: anatomic basis for countercurrent regulation of blood flow. Circulation. 1986;74:1195–202.

    Article  PubMed  CAS  Google Scholar 

  • Izumi T, Yamazoe M, Shibata A. Three-dimensional characteristics of the intramyocardial microvasculature of hypertrophied human hearts. J Mol Cell Cardiol. 1984;16:449–57.

    Article  PubMed  CAS  Google Scholar 

  • Jain AK, Smith EJ, Rothman MT. the coronary venous system: an alternative route of access to the myocardium. J Invasive Cardiol. 2006;18:563–8.

    PubMed  Google Scholar 

  • James TN. Anatomy of the coronary arteries. New York: P.B. Hoeber; 1961.

    Google Scholar 

  • James T. Anatomy and pathology of small coronary arteries in coronary circulation: from basic mechanisms to clinical implications. Leiden: Nijhoff; 1987.

    Google Scholar 

  • Jones CJ, Kuo L, Davis MJ, Chilian WM. Distribution and control of coronary microvascular resistance. Adv Exp Med Biol. 1993;346:181–8.

    Article  PubMed  CAS  Google Scholar 

  • Kaimovitz B, Lanir Y, Kassab GS. Large-scale 3-D geometric reconstruction of the porcine coronary arterial vasculature based on detailed anatomical data. Ann Biomed Eng. 2005;33:1517–35.

    Article  PubMed  Google Scholar 

  • Kaimovitz B, Huo Y, Lanir Y, Kassab GS. Diameter asymmetry of porcine coronary arterial trees: structural and functional implications. Am J Physiol Heart Circ Physiol. 2008;294:H714–23.

    Article  PubMed  CAS  Google Scholar 

  • Kaimovitz B, Lanir Y, Kassab GS. A full 3-D reconstruction of the entire porcine coronary vasculature. Am J Physiol Heart Circ Physiol. 2010;299:H1064–76.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kajiya F, Goto M. Integrative physiology of coronary microcirculation. Jpn J Physiol. 1999;49:229–41.

    Article  PubMed  CAS  Google Scholar 

  • Kalsho G, Kassab GS. Bifurcation asymmetry of the porcine coronary vasculature and its implications on coronary flow heterogeneity. Am J Physiol Heart Circ Physiol. 2004;287:H2493–500.

    Article  PubMed  CAS  Google Scholar 

  • Kassab GS. Functional hierarchy of coronary circulation: direct evidence of a structure-function relation. Am J Physiol Heart Circ Physiol. 2005;289:H2559–65.

    Article  PubMed  CAS  Google Scholar 

  • Kassab GS. Scaling laws of vascular trees: of form and function. Am J Physiol Heart Circ Physiol. 2006;290:H894–903.

    Article  PubMed  CAS  Google Scholar 

  • Kassab G. Design of coronary circulation: a minimum energy hypothesis. Comput Methods Appl Mech Eng. 2007;196:3033–42.

    Article  Google Scholar 

  • Kassab GS, Fung YC. Topology and dimensions of pig coronary capillary network. Am J Physiol. 1994;267:H319–25.

    PubMed  CAS  Google Scholar 

  • Kassab GS, Rider CA, Tang NJ, Fung YC. Morphometry of pig coronary arterial trees. Am J Physiol. 1993;265:H350–65.

    PubMed  CAS  Google Scholar 

  • Kassab GS, Lin DH, Fung YC. Morphometry of pig coronary venous system. Am J Physiol. 1994;267:H2100–13.

    PubMed  CAS  Google Scholar 

  • Kassab GS, Pallencaoe E, Schatz A, Fung YC. Longitudinal position matrix of the pig coronary vasculature and its hemodynamic implications. Am J Physiol. 1997;273:H2832–42.

    PubMed  CAS  Google Scholar 

  • Kassab GS, Navia JA, March K, Choy JS. Coronary venous retroperfusion: an old concept, a new approach. J Appl Physiol. 2008;104:1266–72.

    Article  PubMed  Google Scholar 

  • Kaul S, Ito H. Microvasculature in acute myocardial ischemia: part I: evolving concepts in pathophysiology, diagnosis, and treatment. Circulation. 2004;109:146–9.

    Article  PubMed  Google Scholar 

  • Klocke FJ, Mates RE, Canty Jr JM, Ellis AK. Coronary pressure-flow relationships. Controversial issues and probable implications. Circ Res. 1985;56:310–23.

    Article  PubMed  CAS  Google Scholar 

  • Kresh JY, Fox M, Brockman SK, Noordergraaf A. Model-based analysis of transmural vessel impedance and myocardial circulation dynamics. Am J Physiol. 1990;258:H262–76.

    PubMed  CAS  Google Scholar 

  • Kuo L, Arko F, Chilian WM, Davis MJ. Coronary venular responses to flow and pressure. Circ Res. 1993;72:607–15.

    Article  PubMed  CAS  Google Scholar 

  • Loukas M, Bilinsky S, Bilinsky E, el-Sedfy A, Anderson RH. Cardiac veins: a review of the literature. Clin Anat. 2009;22:129–45.

    Article  PubMed  Google Scholar 

  • McAlpine W. Heart and coronary arteries: an anatomical atlas for clinical diagnosis, radiological investigation, and surgical treatment. New York: Springer; 1975.

    Book  Google Scholar 

  • Miller DS. Internal flow systems. Cranfield: BHRA; 1990.

    Google Scholar 

  • Mittal N, Zhou Y, Ung S, Linares C, Molloi S, Kassab GS. A computer reconstruction of the entire coronary arterial tree based on detailed morphometric data. Ann Biomed Eng. 2005a;33(8):1015–26.

    Article  PubMed  CAS  Google Scholar 

  • Mittal N, Zhou Y, Linares C, Ung S, Kaimovitz B, Molloi S, Kassab GS. Analysis of blood flow in the entire coronary arterial tree. Am J Physiol Heart Circ Physiol. 2005b;289:H439–46.

    Article  PubMed  CAS  Google Scholar 

  • Mohl W, Wolner E, Glogar D. The coronary sinus: proceedings of the 1st international symposium on myocardial protection via the coronary sinus. Darmstadt: Steinkopff; 1984.

    Book  Google Scholar 

  • Murray CD. The physiological principle of minimum work applied to the angle of branching of arteries. J Gen Physiol. 1926;9:835–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Myers WW, Honig CR. Number and distribution of capillaries as determinants of myocardial oxygen tension. Am J Physiol. 1964;207:653–60.

    PubMed  CAS  Google Scholar 

  • Nielsen PM, Le Grice IJ, Smaill BH, Hunter PJ. Mathematical model of geometry and fibrous structure of the heart. Am J Physiol. 1991;260:H1365–78.

    PubMed  CAS  Google Scholar 

  • Olsson RAB, Bugni WJ. Coronary circulation. In: Fozzard HA, editor. The heart and cardiovascular system: scientific foundations. New York: Raven; 1986. p. 2 v. (1694p.).

    Google Scholar 

  • Reneman RS, Arts T. Dynamic capacitance of epicardial coronary arteries in vivo. J Biomech Eng. 1985;107:29–33.

    Article  PubMed  CAS  Google Scholar 

  • Rossitti S, Lofgren J. Vascular dimensions of the cerebral arteries follow the principle of minimum work. Stroke. 1993;24:371–7.

    Article  PubMed  CAS  Google Scholar 

  • Sherman TF. On connecting large vessels to small. The meaning of Murray’s law. J Gen Physiol. 1981;78:431–53.

    Article  PubMed  CAS  Google Scholar 

  • Smith NP, Pullan AJ, Hunter PJ. Generation of an anatomically based geometric coronary model. Ann Biomed Eng. 2000;28:14–25.

    Article  PubMed  CAS  Google Scholar 

  • Smith N, Pillan AJ, Hunter PJ. Ana anatomically based model of transient coronary blood flow in the heart. SIAM J Appl Math. 2002;62:990–1018.

    Article  Google Scholar 

  • Spaan JA. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res. 1985;56:293–309.

    Article  PubMed  CAS  Google Scholar 

  • Spaan JAE. Coronary blood flow: mechanics, distribution, and control. Dordrecht: Kluwer Academic Publishers; 1991.

    Book  Google Scholar 

  • Streeter DJ. Gross morphometry and fiber geometry of the heart. In: Berne RM, Sperelakis N, Geiger SR, editors. Handbook of physiology. Section 2. The cardiovascular system, The heart, vol. 1. Baltimore: American Physiological Society; 1979.

    Google Scholar 

  • Tanaka A, Mori H, Tanaka E, Mohammed MU, Tanaka Y, Sekka T, Ito K, Shinozaki Y, Hyodo K, Ando M, Umetani K, Tanioka K, Kubota M, Abe S, Handa S, Nakazawa H. Branching patterns of intramural coronary vessels determined by microangiography using synchrotron radiation. Am J Physiol. 1999;276:H2262–7.

    PubMed  CAS  Google Scholar 

  • Toyota E, Koshida R, Hattan N, Chilian WM. Regulation of the coronary vasomotor tone: what we know and where we need to go. J Nucl Cardiol. 2001;8:599–605.

    Article  PubMed  CAS  Google Scholar 

  • Uylings H. Optimization of diameter and bifurcation angles in lung and vascular tree structures. Bull Math Biol. 1977;39:509–19.

    Article  PubMed  CAS  Google Scholar 

  • Van Bavel E. Metabolic and myogenic control of blood flow studied on isolated small arteries. Ph.D., University of Amsterdam; 1989.

    Google Scholar 

  • VanBavel E, Spaan JA. Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ Res. 1992;71:1200–12.

    Article  PubMed  CAS  Google Scholar 

  • Vankan WJ, Huyghe JM, Slaaf DW, van Donkelaar CC, Drost MR, Janssen JD, Huson A. Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction. Am J Physiol. 1997;273:H1587–94.

    PubMed  CAS  Google Scholar 

  • von Lüdinghausen M. The venous drainage of the human myocardium. New York: Springer; 2003.

    Book  Google Scholar 

  • von Ludinghausen M. Anatomy of the coronary arteries and veins. In: Mohl W, Wolner E, Glogar D, editors. The coronary sinus: proceedings of the 1st international symposium on myocardial protection via the coronary sinus. Darmstadt: Steinkopff; 1984. p. 5–7.

    Google Scholar 

  • Weiss HR, Winbury MM. Nitroglycerin and chromonar on small-vessel blood content of the ventricular walls. Am J Physiol. 1974;226:838–43.

    PubMed  CAS  Google Scholar 

  • Zamir M. Nonsymmetrical bifurcations in arterial branching. J Gen Physiol. 1978;72:837–45.

    Article  PubMed  CAS  Google Scholar 

  • Zamir M. On fractal properties of arterial trees. J Theor Biol. 1999;197:517–26.

    Article  PubMed  CAS  Google Scholar 

  • Zamir M. Arterial branching within the confines of fractal L-system formalism. J Gen Physiol. 2001;118:267–76.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zamir M, Brown N. Arterial branching in various parts of the cardiovascular system. Am J Anat. 1982;163:295–307.

    Article  PubMed  CAS  Google Scholar 

  • Zamir M, Wrigley SM, Langille BL. Arterial bifurcations in the cardiovascular system of a rat. JGen Physiol. 1983;81:325–35.

    Article  PubMed  CAS  Google Scholar 

  • Zamir M, Phipps S, Langille BL, Wonnacott TH. Branching characteristics of coronary arteries in rats. Can J Physiol Pharmacol. 1984;62:1453–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan S. Kassab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kaimovitz, B., Huo, Y., Lanir, Y., Kassab, G.S. (2016). Structure–Function Relations in the Coronary Vasculature. In: Kassab, G., Sacks, M. (eds) Structure-Based Mechanics of Tissues and Organs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7630-7_9

Download citation

Publish with us

Policies and ethics