Skip to main content
Log in

Coronary flow patterns in normal and ischemic hearts: Transmyocardial and artery to vein distribution

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The dynamics of the transmyocardial coronary flow patterns during normal and ischemic conditions are complex and relatively inaccessible to measurements. Therefore, theoretical analyses are needed to help in understanding these phenomena. The proposed model employs compartmental division to three layers, each with four vessel-size compartments which are characterized by resistance and compliance. These compartments are subjected to the extravascular compressive pressure (ECP) generated by cardiac contraction, which by modifying the transmural pressure causes changes in cross-sectional area of the vessels in each compartment continuously determining the resistance and capacitance values. Autoregulation and collaterals are also included in order to simulate the flow patterns during regional ischemia. Using these features, the model predicts the typical out of phase arterial and venous flow patterns. Systolic collapse of the large intramyocardial veins during the normal cycle, as well as systolic arteriolar collapse during ischemia are predicted. The transmural flow during ischemia is characterized by alternating flows between the layers. The ECP is considered here is two ways: (a) as a function of left ventricle (LV) pressure, decreasing linearly from endocardium to epicardium and (b) as the interstitial fluid pressure, employing a multilayer muscle-collagen model of the LV. While both of these approaches can describe the dynamics of coronary flow under normal conditions, only the second approach predicts the large compressive effects due to high ECP obtained at very low cavity pressure, resulting from significant muscle shortening and radial collagen stretch. This approach, combining a detailed description of transmural coronary circulation interacting with the contracting myocardium agrees with many observations on the dynamics of coronary flow and suggests that the type of LV mechanical model is important for that interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armour, J.A.; Klassen, G.A. Pressures and flows in the epicardial coronary veins of the dog heart—Responses to positive inotropism. Can. J. Physiol. Pharmacol. 62:38–48; 1983.

    Google Scholar 

  2. Ashikawa, K.; Kanatsuka, H.; Suzuki, T.; Takashima, T. Phasic blood flow velocity pattern in epimyocardial microvessels in beating canine left ventricle. Circ. Res. 59:704–711; 1986.

    CAS  PubMed  Google Scholar 

  3. Baird, R.J.; Goldbach, M.M.; De La Rocha, A. Intramyocardial pressure: The persistence of its transmural gradients in the empty heart and its relationship to myocardial oxygen consumption. J. Thorac. Cardiovasc. Surg. 59:810–823; 1970.

    CAS  PubMed  Google Scholar 

  4. Baez, S.; Lamport, H.; Baez, A. In: Copley, A.L.; Stainsby, G., eds. Flow properties of blood and other biological systems. Oxford: Pergamon Press; 1960: pp. 122–136. (c.f. Fung, Y. Biomechanics: Mechanical properties of living tissues. New York: Springer Verlag; 1981: pp. 284–286.)

    Google Scholar 

  5. Bellamy, R.F. Diastolic coronary pressure flow relationship in the dog. Circ. Res. 43:92–101; 1978.

    CAS  PubMed  Google Scholar 

  6. Beyar, R.; Guerci, A.; Halperin, H.; Tsitlik, J.; Weisfeldt, M. Intermittent coronary sinus occlusion following coronary arterial ligation results in venous retroperfusion. Circ. Res. 65:695–707; 1989.

    CAS  PubMed  Google Scholar 

  7. Beyar, R.; Caminker, R.; Manor, D.; ben Ari, R.; Sideman, S. On the mechanism of transmural myocardial compression and perfusion. In: Sideman, S.; Beyar, R.; Kleber, A., eds. Cardiac electrophysiology, circulation and transport. Boston, MA: Kluwer Academic Publ; 1991: pp. 245–258.

    Google Scholar 

  8. Beyar, R.; Sideman, S. A computer study of left ventricular performance based on fiber structure, sarcomere dynamics, and transmural electrical propagation velocity. Circ. Res. 55:358–375; 1984.

    CAS  PubMed  Google Scholar 

  9. Beyar, R.; Sideman, S. Time dependent coronary blood flow distribution in the left ventricular wall. Am. J. Physiol. 252 (Heart and Circ. Physiol. 21): H417-H433; 1987.

    CAS  PubMed  Google Scholar 

  10. Bruinsima, P.; Arts, T.; Dankelman, J.; Spaan, J.A.E. Model of the coronary circulation based on pressure dependence of the coronary resistance and compliance. Basic Res. Cardiol. 83:510–524; 1988.

    Google Scholar 

  11. Caulfield, J.B.; Borg, T.K. The collagen network of the heart. J. Lab. Invest. 40:364–372; 1979.

    CAS  Google Scholar 

  12. Chadwick, R.S.; Tedgui, A.; Michel, J.B.; Ohayon, J.; Levy, B.I. A theoretical model for myocardial blood flow. In: Brun, P.; Chadwick, R.S.; Levy, B.I., eds. Cardiovascular dynamics and models. Proceedings of NIH-INSERM Workshops, Vol. 183. Paris: INSERM; 1988: pp. 77–90.

    Google Scholar 

  13. Chadwick, R.S.; Tedgui, A.; Michel, J.B.; Ohayon, J.; Levy, B.I. Phasic regional myocardial inflow and outflow: Comparison of theory and experiments. Am. J. Physiol. 258:H1687-H1698; 1990.

    CAS  PubMed  Google Scholar 

  14. Chilian, W.M.; Eastham, C.L.; Marcus, M.L. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am. J. Physiol. (Heart and Circ. Physiol. 20): H779–H788; 1986.

    Google Scholar 

  15. Chilian, W.M.; Marcus, M.L. Phasic coronary flow velocity in intramural and epicardial coronary arteries. Circ. Res. 50:775–781; 1982.

    CAS  PubMed  Google Scholar 

  16. Ciuffo, A.A.; Guerci, A.D.; Halperin, H.; Bulkley, G.; Casale, A.; Weisfeldt, M.L. Intermittent obstruction of the coronary sinus following coronary ligation in dogs reduces ischemic necrosis and increases myocardial perfusion. In: Mohl, W.; Wolner, E.; Glogar, D., eds. The coronary sinus. New York: Springer Verlag; 1984: pp. 454–464.

    Google Scholar 

  17. Doucette, J.W.; Goto, M.; Flynn, A.E.; Husseini, W.K.; Hoffman, J.I.E. Effect of left ventricular pressure and myocardial contraction on coronary flow (Abstract) Circulation 82 (Suppl. III): III-379; 1990.

    Google Scholar 

  18. Downey, J.M.; Kirk, E.S. Inhibition of coronary blood flow by vascular waterfall mechanism. Circ. Res. 36:753–760; 1985.

    Google Scholar 

  19. Farhi, E.R.; Flocke, F.J.; Mates, R.E.; Kumar, K.; Judd, R.M.; Canty, Jr., J.M., Satoh, S.; Sekovsky, B. Tone dependent waterfall behavior during venous pressure elevation in isolated canine hearts. Circ. Res. 68:392–401; 1991.

    CAS  PubMed  Google Scholar 

  20. Hoffman, J.I.E.; Spaan, J.A.E. Pressure flow relation in the coronary circulation. Physiol. Rev. 70:331–390; 1990.

    CAS  PubMed  Google Scholar 

  21. Hollenstein, R.; Nerem, R.M. Parametric analysis of flow in the intramyocardial circulation. Ann. Biomed. Eng. 18:347–365; 1990.

    Google Scholar 

  22. Kajiya, F.; Tomonaga, G.; Tsujiyoka, K.; Ogasawara, Y. Evaluation of local blood flow velocity in proximal and distal coronary arteries by laser Doppler methods. J. Biomech. Eng. 107:10–15; 1985.

    CAS  PubMed  Google Scholar 

  23. Kajiya, F.; Tsujiyoka, K.; Goto, M.; Wada, Y.; Tadaoko, S.; Nakai, M.; Hiramatu, O.; Ogasawara, Y.; Mito, K.; Hoki, N.; Tomonaga, G. Evaluation of phasic blood flow velocity in the great cardiac vein by a laser Doppler method. Heart Vessels 1:16–23; 1985.

    Article  CAS  PubMed  Google Scholar 

  24. Kajiya, F.; Wada, Y.; Goto, M.; Tsujiyoka, K. Blood flow in coronary vessels. In: Sugawaara, M.; Kajiya, F.; Kitabake, A.; Matsuo, H., eds. Blood flow in the heart and large vessels. Tokyo: Springer Verlag; 1989: pp. 69–95.

    Google Scholar 

  25. Klocke, F.J.; Mates, R.E.; Canty, J.M.; Ellis, A.K. Coronary pressure flow relationships controversial issues and probable implications. Circ. Res. 56:310–323; 1985.

    CAS  PubMed  Google Scholar 

  26. Klocke, F.J.; Mates, R.E.; Canty, J.M.; Sokowsky, B.; Gunawardawe, C.; Baelo, E.B.; Hajduczok, Z.D. Tone dependent vascular waterfall behavior during forward coronary flow (abstract). Circulation (74 Suppl. II):87; 1986.

    Google Scholar 

  27. Krams, K.; Sipkema, P.; Zegers, J.; Westerhof, N. Contractility is the main determinant of coronary systolic flow impediment. Am. J. Physiol. (Heart Circ. Physiol.) 26: H1936-H1944; 1989.

    Google Scholar 

  28. Kresh, J.Y.; Fox, M.; Brockman, S.K.; Noordergraaf, A. Model-based analysis of transmural vessel impedance and myocardial circulation dynamics. Am. J. Physiol. 258: H262-H276; 1990.

    CAS  PubMed  Google Scholar 

  29. Manor, D.; Dinnar, U.; Sideman, S.; Beyar, R. A model of the coronary epicardial tree and intramyocardial circulation in normal and ischemic hearts. Computers in Cardiology (Jerusalem, 1989) 16:247–250; 1990.

    Google Scholar 

  30. Sipkema, P.; Westerhof, N. Mechanics of thin walled collapsible microtube. Ann. Biomed. Eng. 17:203–217; 1989.

    Article  CAS  PubMed  Google Scholar 

  31. Spaan, J.A.E. Coronary diastolic pressure flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ. Res. 56:293–309; 1985.

    CAS  PubMed  Google Scholar 

  32. Spaan, J.A.E.; Bruel, N.P.W.; Laird, J.D. Diastolic systolic coronary flow differences are caused by intramyocardial pump action in the un-anesthetized dog. Circ. Res. 49:584–593; 1981.

    CAS  PubMed  Google Scholar 

  33. Stein, P.D.; Marzilli, M.; Sabbah, H.N.; Tennyson, L. Systolic and diastolic pressure gradients within the left ventricular wall. Am. J. Physiol. (Heart Circ. Physiol. 7): H625–H630; 1980.

    Google Scholar 

  34. Steinhausen, N.; Tillmanns, H.; Thederan, H. Microcirculation of the epimyocardial layer of the heart. Pflugers Arch. 378:9–14; 1978.

    Article  CAS  PubMed  Google Scholar 

  35. Streeter, D.D.; Vaisnav, R.N.; Patel, D.J.; Ross, Jr., J.; Sonnenblick, E.H. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24:339–347; 1969.

    PubMed  Google Scholar 

  36. Tillmanns, H.; Ikeda, S.; Hansen, H.; Sarma, J.S.M.; Fauvel, J.M.; Bing, R.J. Microcirculation in the ventricle of the dog and turtle. Circ. Res. 34:561–569; 1974.

    CAS  PubMed  Google Scholar 

  37. Uhlig, P.N.; Baer, R.W.; Vlahakes, G.J.; Hanley, F.L.; Messina, L.M.; Hoffman, J.I.E. Arterial and venous pressure flow relations in anesthetized dogs. Evidence for a vascular waterfall in epicardial coronary veins. Circ. Res. 55:238–248; 1984.

    CAS  PubMed  Google Scholar 

  38. Yoshida, S.; Akizuki, S.; Gowski, D.; Downey, J.M. Discrepancy between microspheres and diffusible tracer estimates of perfusion to ischemic myocardium. Am. J. Physiol. 248 (Heart Circ. Physiol. 18):H255-H264; 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyar, R., Caminker, R., Manor, D. et al. Coronary flow patterns in normal and ischemic hearts: Transmyocardial and artery to vein distribution. Ann Biomed Eng 21, 435–458 (1993). https://doi.org/10.1007/BF02368635

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368635

Keywords

Navigation