Skip to main content
Log in

Rat myometrial smooth muscle cells show high levels of gap junctional communication under a variety of culture conditions

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Gap junctional communciation was examined in rat myometrial smooth muscle cells cultured under a variety of conditions. As a functional measure of gap junctional communication, donor cells were microinjected with the fluorescent dye, Lucifer yellow, and the transfer of dye from donor cells to primary neighbor cells was monitored by fluorescence microscopy. In a myometrial smooth muscle cell line established from midgestation (Day 10) rats, high levels of dye transfer, in excess of 90%, were observed in primary cultures and at Passages 1 and 10. A slight decrease in dye transfer to 75% was observed at Passage 5. Similarly, high levels of dye transfer were observed in a smooth muscle cell line established from the myometrium of a late-gestation (Day 19) rat under subconfluent as well as confluent culture conditions. Myometrial smooth muscle cell cultures established from sexually immature 19-day-old rats also exhibited high levels of dye transfer in primary cultures and at Passage 10. Treatment of primary myometrial smooth muscle cell cultures derived from immature 19-day-old rats with 17β-estradiol (50 ng/ml) and 4-pregnen-3,20-dione (150 ng/ml) for 48 h in vitro had no significant effect on the high levels of dye transfer. Thus, extensive dye transfer was observed in the rat myometrial smooth muscle cells under all culture conditions examined, regardless of sexual maturity or gestational stage of the animal, in vitro hormone treatment, or cell density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blennerhassett, M. G.; Kannan, M. S.; Garfield, R. E. Functional characterization of cell-to-cell coupling in cultured rat aortic smooth muscle. Am. J. Physiol. 252:C555-C569; 1987.

    PubMed  CAS  Google Scholar 

  • Boulet, A. P.; Fortier, M. A. Preparation and characterization of rabbit myometrial cells in primary culture: influence of estradiol and progesterone treatment. In Vitro Cell. Dev. Biol. 23:93–99; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Casey, M. L.; MacDonald, P. C.; Mitchell, M. D., et al. Maintenance and characterization of human myometrial smooth muscle cells in monolayer culture. In Vitro Cell. Dev. Biol. 20:396–403; 1984.

    Article  CAS  Google Scholar 

  • De Mello, W. C. Modulation of junctional permeability. In: De Mello, W. C., ed. Cell-to-cell communication. New York: Plenum Press; 1987:29–64.

    Google Scholar 

  • Demianczuk, N.; Towell, M. E.; Garfield, R. E. Myometrial electrophysiological activity and gap junctions in the pregnant rabbit. Am. J. Obstet. Gynecol. 149:485–491; 1984.

    PubMed  CAS  Google Scholar 

  • Ernst, M.; Schmid, C.; Froesch, E. R. Phenol red mimics biological actions of estradiol: enhancement of osteoblast proliferation in vitro and of type I collagen gene expression in bone and uterus of rats in vivo. J. Steroid Biochem. 33:907–914; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Garfield, R. E.; Hayashi, R. H. Appearance of gap junctions in the myometrium of women during labor. Am. J. Obstet. Gynecol. 140:254–260; 1981.

    PubMed  CAS  Google Scholar 

  • Garfield, R. E.; Sims, S.; Daniel, E. E. Gap junctions: their presence and necessity in myometrium during parturition. Science 198:958–960; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Garfield, R. E.; Sims, S. M.; Kannan, M. S., et al. Possible role of gap junctions in activation of myometrium during parturition. Am. J. Physiol. 235:C168-C179; 1978.

    PubMed  CAS  Google Scholar 

  • Garfield, R. E.; Ratrideau, S.; Challis, J. R. G., et al. Hormonal control of gap junction formation in sheep myometrium during parturition. Biol. Reprod. 21:999–1007; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Garfield, R. E.; Kannan, M. S.; Daniel, E. E. Gap junction formation in myometrium: control by estrogens, progesterone, and prostaglandins. Am. J. Physiol. 238:C81-C89; 1980.

    PubMed  CAS  Google Scholar 

  • Garfield, R. E.; Daniel, E. E.; Dukes, M., et al. Changes of gap junctions in the myometrium of guinea pig at parturition and abortion. Can. J. Physiol. Pharmacol. 60:335–341; 1982.

    PubMed  CAS  Google Scholar 

  • Garfield, R. E.; Cole, W. C.; Blennerhassett, M. G. Gap junctions in uterine smooth muscle. In: Sperelakis, N.; Cole, W. C., eds. Cell interactions and gap junctions, vol. II. Boca Raton, FL: CRC Press; 1989:239–266.

    Google Scholar 

  • Goulet, F.; Normand, C.; Morin, O. Cellular interactions promote tissue-specific function, biomatrix deposition and junctional communication of primary cultured hepatocytes. Hepatology 8:1010–1018; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Hardin, B. D. Reproductive toxicity of glycol ethers. Toxicology 27:91–102; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Hubert, J. F.; Vincent, A.; Labrie, F. Estrogenic activity of phenol red in rat anterior pituitary cells in culture. Biochem. Biophys. Res. Commun. 141:885–891; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Kalimi, G. H.; Lo, C. W. Communication compartments in the gastrulating mouse embryo. J. Cell Biol. 107:241–255; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Kassis, J. A.; Sakai, D.; Walent, J. H., et al. Primary cultures of estrogen responsive cells from rat uteri: induction of progesterone receptors and a secreted protein. Endocrinology. 114:1558–1566; 1984a.

    PubMed  CAS  Google Scholar 

  • Kassis, J. A.; Walent, J. H.; Gorski, J. Estrogen receptors in rat uterine cell cultures: effect of medium on receptor concentration. Endocrinology 115:762–769; 1984b.

    PubMed  CAS  Google Scholar 

  • Krosl, J.; Breskvar, K.; Hudnik-Plevnik, T. Prolonged cultivation of rat uterine cells with preserved estrogen responsiveness. J. Steroid Biochem. 33:189–194; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Larson, D. M.; Haudenschild, C. C.; Beyer, E. C. Gap junction messenger RNA expression by vascular wall cells. Circ. Res. 66:1074–1080; 1990.

    PubMed  CAS  Google Scholar 

  • Loch-Caruso, R.; Juberg, D. R.; Caldwell, V., et al. Cultured myometrial cells establish communicating gap junctions. Cell Biol. Int. Rep. 14:905–916; 1990.

    Article  Google Scholar 

  • Loch-Caruso, R.; Pahl, M. S. Gap junctional communication in cultured myometrial cells. In Vitro Cell. Dev. Biol. 27:58A; 1991.

  • Ruch, R. J.; Klaunig, J. E. Kinetics of phenobarbital inhibition of intercellular communication in mouse hepatocytes. Cancer Res. 48:2519–2523; 1988.

    PubMed  CAS  Google Scholar 

  • Skalli, O.; Ropraz, P.; Trzeciak, A., et al. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell Biol. 103:2787–2796; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, W. W. Functional connections between cells as revealed by dyecoupling with a highly fluorescent naphthalimide tracer. Cell 14:741–759; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Sumida, C.; Lecerf, F.; Pasqualini, J. R. Control of progesterone receptors in fetal uterine cells in culture: effects of estradiol, progestins, antiestrogens, and growth factors. Endocrinology 122:3–11; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Warner, A. E.; Guthrie, S. C.; Gilula, N. B. Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature 311:127–131; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki, H.; Enomoto, T.; Shiba, Y., et al. Intercellular communication capacity as a possible determinant of transformation sensitivity of BALB/c 3T3 clonal cells. Cancer Res. 45:637–641; 1985.

    PubMed  CAS  Google Scholar 

  • Yamasaki, H.; Hollstein, M.; Mesnil, M., et al. Selective lack of intercellular communication between transformed and nontransformed cells as a common property of chemical and oncogene transformation of BALB/c 3T3 cells. Cancer Res. 47:5658–5664; 1987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loch-Caruso, R., Pahl, M.S. & Juberg, D.R. Rat myometrial smooth muscle cells show high levels of gap junctional communication under a variety of culture conditions. In Vitro Cell Dev Biol - Animal 28, 97–101 (1992). https://doi.org/10.1007/BF02631012

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631012

Key words

Navigation