Skip to main content
Log in

Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Three different target tissues (protoplast-derived cells, nodules, and stems) and two unrelated hybrid genotypes of Populus (P. alba x P. grandidentata ‘Crandon’ and P. nigra ‘Betulifolia’ x P. trichocarpa) have been stably transformed by electric discharge particle acceleration using a 18.7 kb plasmid containing NOS-NPT, CaMV 35S-GUS, and CaMV 35S-BT. Four transformed plants of one hybrid genotype, NC5339, containing all 3 genes were recovered and analyzed. Two expressed GUS and one was highly resistant to feeding by 2 lepidopteran pests (the forest tent caterpillar, Malacosoma disstria, and the gypsy moth, Lymantria dispar.) Pretreatment of the target tissues, fine-tuning of the bombardment parameters, and the use of a selection technique employing flooding of the target tissues were important for reliable recovery of transformed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

benzyladenine

NAA:

1-naphthaleneacetic acid

TDZ:

thidiazuron

DB:

2,6-dichlorobenzonitrile

WPM:

woody plant medium

Kan:

kanamycin

Carb:

carbenicillin

Ben:

benylate

gus:

β-glucuronidase (EC 3.2.1.31)

NPT:

neomycin phosphoransferase (EC 2.7.1.95) gene

GUS:

betaglucuronidase gene

BT:

modified endotoxin gene originally from Bacillus thuringiensis (B.t.)

PCR:

polymerase chain reaction

References

  • Barton KA, Whiteley HR, Yang N (1987) Plant Physiol 85:1103–1109.

    Google Scholar 

  • Bekkaoui F, Pilon M, Laine E, Raju DSS, Crosby WL, Dunstan DI (1988) Plant Cell Rep 7:481–484.

    Google Scholar 

  • Beremand PD, Hannapel DJ, Guerra DJ, Kuhn DN, Ohlrogge JB (1987) Arch Biochem Biophys 256:90–100.

    Google Scholar 

  • Christou P, Swain W, Yang N.-S, McCabe D (1989) PNAS 86:7500–7504.

    Google Scholar 

  • Dellaporta S, Wood J, Hicks J (1983) Plant Mol Biol Rep 1:19–21.

    CAS  Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Haissig B, Comai L. (1987) Mol Gen Genet 206:192–199.

    Google Scholar 

  • Fischhoff DA, Bowdisk KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Kretzner K, Meyer FJ, Rochester DE, Rogers SG, Fraley RT (1987) Bio/Technology 5:807–813.

    Google Scholar 

  • Galbraith DW, Shields BA (1982) Physiol Plant 55:25–30.

    Google Scholar 

  • Grisdale D (1985) In: Singh P, Moore RS (eds), Handbook of Insect Rearing, Vol. II, Elsevier Publishing, NY, pp. 369–379.

    Google Scholar 

  • Heimpel AM, Angus TA (1959) J Ins Path 1:152–170.

    Google Scholar 

  • James DJ, Passey, AJ, Barbara DJ, Bevan M (1989) Plant Cell Rep 7:658–661.

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bewan MW (1987) EMBO J 6:3901–3907.

    CAS  PubMed  Google Scholar 

  • Krieg A, Langenbruch GA (1981) In: H.D. Burgess HD (ed.), Microbial Control of Pests and Plant Diseases, 1970–1980, Academic Press, N.Y. pp. 837–1097.

    Google Scholar 

  • Lloyd G, McCown B (1980) Proc Int Plant Prop Soc 30:420–427.

    Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P. (1988) Bio/Technology 6:923–926.

    Google Scholar 

  • McCown BH, Zeldin E, Pinkalla H, Dedolph R (1988) In: Hanover J, Keathley D (eds), Genetic Manipulation of Woody Plants, Plenum Press, Seattle, WA, pp. 149–166.

    Google Scholar 

  • McGranahan G, Leslie C, Uratsu S, Martin L, Dandekar A (1988) Bio/Technology 6:800–804.

    Google Scholar 

  • Montgomery ME, Wallner WE (1988) In: Berryman AA (ed.), Dynamics of Forest Insect Populations, Plenum Press, N.Y., pp. 354–375.

    Google Scholar 

  • Murray M, Thompson W (1980) Nucl Acids Res 8:4321–4325.

    Google Scholar 

  • Pythoud F, Sinkar VP, Nester EW, Gordon MP (1987) Bio/Technology 5:1323–1327.

    Google Scholar 

  • Raffa KF (1989) BioScience 39:524–534.

    Google Scholar 

  • Ranney JW, Wright LL, Layton PA (1987) J For 85:17–28.

    Google Scholar 

  • Russell JA, McCown BH (1988) Plant Cell Rep 7:59–62.

    Google Scholar 

  • Saiki R, Gelfaud D, Stoffel S, Scharf S, Higuchi R, Horn G, Mullis K, Erlich, H (1988) Science 239:487–494.

    CAS  PubMed  Google Scholar 

  • SAS (1982) SAS Users Guide: Statistics. SAS Institute, Cary, NC.

    Google Scholar 

  • Schnepf HE, Wong HC, Whiteley HR (1985) J Biol Chem 260:6264–6272.

    Google Scholar 

  • Seguin A, Lalonde M (1988) Plant Cell Rep 7:367–370.

    Google Scholar 

  • Sellmer JC, McCown BH (1989) In: Bajaj YPS (ed) Plant Protoplasts and Genetic Engineering II, Springer Verlag, Berlin. pp. 155–172.

    Google Scholar 

  • Sellmer JC, McCown BH, Haissig BE (1989) Tree Physiol 5:219–227.

    Google Scholar 

  • Vaeck M, Reynaerts A, Hofte H, Jensens S, DeBeuckeleer M, Dean C, Abeau M, VanMontagu M, Leemand J (1987) Nature 328:33–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.M. Widholm

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCown, B.H., McCabe, D.E., Russell, D.R. et al. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Reports 9, 590–594 (1991). https://doi.org/10.1007/BF00232339

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232339

Keywords

Navigation