Skip to main content

Abstract

Entomopathogenic fungi are microorganisms capable of infecting and killing arthropods and therefore have a great potential in pest management. As the extensive use of synthetic pesticides has led to increased resistance in insects, decreased natural enemies, and had negative impacts on environmental and human health, the search for eco-friendly control agents is urgent. Entomopathogenic fungi are promising alternatives in this regard and are attracting global attention, with increasing efforts and financial investments being made for the development, commercialization and use of fungus-based control products. Despite scientific and technological advances, there is still a need for studies to expand the number of species applicable in pest management and improve their performance in the field. There is also a need to increase user awareness regarding their correct use with the aim to establish their widespread adoption and market potential. This chapter covers the main taxonomic groups that comprise entomopathogenic fungi, their modes of action to establish insect infection and spread, and the insect’s defense mechanisms against these fungi. Furthermore, techniques of fungal isolation, selection, and production are discussed. The usage status, challenges, and prospects of mycoinsecticides are also addressed, highlighting their application potential for sustainable agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. Wiley, New York, 870 p

    Google Scholar 

  • Ali S, Huang Z, Ren S (2010) Production of cuticle degrading enzymes by Isaria fumosorosea and their evaluation as a biocontrol agent against diamondback moth. J Pestic Sci 83:361–370

    Article  Google Scholar 

  • Altinok HH, Altinok MA, Koca AS (2019) Modes of action of Entomopathogenic Fungi. Curr Trends Nat Sci 8:117–124

    Google Scholar 

  • Altre JA, Vandenberg JD (2001) Penetration of cuticle and proliferation in hemolymph by Paecilomyces fumosoroseus isolates that differ in virulence against lepidopteran larvae. J Invertebr Pathol 78:81–86. https://doi.org/10.1006/jipa.2001.5046

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Alves SB (1998) Fungos entomopatogênicos. In: Alves SB (ed) Controle microbiano dos insetos, 2nd edn. FEALQ, Piracicaba, pp 289–381

    Google Scholar 

  • Alves RT, Faria M (2010) Pequeno manual sobre fungos entmopatogênicos. Documentos 286. Embrapa Cerrado, Brazil, pp 1–50. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/77782/1/doc-286.pdf

    Google Scholar 

  • Alves SB, Pereira RM (1998) Produção de fungos entomopatogênicos. In: Alves SB (ed) Controle Microbiano de Insetos, 2nd edn. FEALQ, Piracicaba, pp 845–869

    Google Scholar 

  • Alves SB, Leite LG, Batista Filho A, Almeida JEM, Marques EJ (2008) Produção massal de fungos entomopatogênicos na América Latina. In: Alves SB, Lopes RB (eds) Controle Microbiano de Pragas na América Latina. FEALQ, Piracicaba, pp 215–237

    Google Scholar 

  • Ambethgar V (2009) Potential of entomopathogenic fungi in insecticide resistance management (IRM): a review. J Biopest 2:177–193

    CAS  Google Scholar 

  • Aquino MLN (1974) O fungo entomopatógeno Metarhizium anisopliae (Metsch.) SoroKin, no Estado de Pernambuco, vol 72. Boletim Técnico do Instituto de Pesquisa Agronômicas, Recife, pp 1–26

    Google Scholar 

  • Aquino MLN, Cavalcanti VALB, Sena RC, Queiroz GF (1975) Nova tecnologia de multiplicação do fungo Metarhizium anisopliae. Boletim Técnico da CODECAP 4:1–31

    Google Scholar 

  • Araújo JPM, Hughes DP (2016) Chapter one. Diversity of entomopathogenic fungi: which groups conquered the insect body? In: Lovett B, Leger RJS (eds) Genetics and molecular biology of entomopathogenic fungi, Advances in genetics, vol 94, pp 1–39

    Chapter  Google Scholar 

  • Baron NC, Rigobelo EC, Zied DC (2019) Filamentous fungi in biological control: current status and future perspectives. Chil J Agric Res 79:307–315

    Article  Google Scholar 

  • Barr DJS (2001) Chytridiomycota. In: Systematics and evolution. Springer, Berlin, Heidelberg, pp 93–112

    Chapter  Google Scholar 

  • Barr DJS, Désaulniers NL, Knox JS (1987) Catenochytridium hemicysti N. Sp.: morphology, physiology and zoospore ultrastructure. Mycologia 79(4):587–594. https://doi.org/10.1080/00275514.1987.12025428

    Article  Google Scholar 

  • Behie SW, Bidochka MJ (2014) Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl Environ Microbiol 80:1553–1560. https://doi.org/10.1128/AEM.03338-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beilharz VC, Beilharz DG, Parbery DG, Swart HJ (1982) Dodine: a selective agent for certain soil fungi. Trans Br Mycol Soc 79:507–511

    Article  Google Scholar 

  • Benny GL, Humber RA, Voigt K (2014) 8 Zygomycetous Fungi: phylum Entomophthoromycota and subphyla Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina. In: McLaughlin D, Spatafora J (eds) Systematics and evolution. The Mycota (a comprehensive treatise on Fungi as experimental Systems for Basic and Applied Research), vol 7A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55318-9_8

    Chapter  Google Scholar 

  • Bhattacharyya A, Samal AC, Kar S (2004) Entomophagous fungus in pest management. News Lett 5:1–4

    Google Scholar 

  • Biswas T, Joop G, Rafaluk-Mohr C (2018) Cross-resistance: a consequence of bi-partite host-parasite coevolution. Insects 9:28

    Article  PubMed Central  Google Scholar 

  • Blackwell M (2011) The Fungi: 1, 2, 3… 5.1 million species? Am J Bot 98(3):426–438. https://doi.org/10.3732/ajb.1000298

    Article  PubMed  Google Scholar 

  • Blanford S, Jenkins NE, Christian R et al (2012) Storage and persistence of a candidate fungal biopesticide for use against adult malaria vectors. Malar J 11:354

    Article  PubMed  PubMed Central  Google Scholar 

  • Boomsma J, Jensen A, Meyling N, Eilenberg J (2014) Evolutionary interaction networks of insect pathogenic fungi. Environ Entomol 59:467–485

    Article  CAS  Google Scholar 

  • Boucias DR, Pendland JC (1998) Entomopathogenic fungi; Fungi imperfecti. In: Boucias DR, Pendland JC (eds) Principles of insect pathology. Kluwer Academic, Dordrecht, pp 321–359

    Chapter  Google Scholar 

  • Browne N, Heelan M, Kavanagh K (2013) An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 4(7):597–603

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchon N, Silverman N, Cherry S (2014) Immunity in Drosophila melanogaster—from microbial recognition to whole-organism physiology. Nat Rev Immunol 14(12):796–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt TM (2002) Use of entomogenous fungi for the control of insect pests. In: Agricultural applications. Springer, Berlin, pp 111–134

    Chapter  Google Scholar 

  • Castro T, Mayerhofer J, Enkerli J, Eilenberg J et al (2016) Persistence of Brazilian isolates of the entomopathogenic fungi Metarhizium anisopliae and M. robertsii in strawberry crop soil after soil drench application. Agric Ecosyst Environ 233:361–369

    Article  Google Scholar 

  • Chandler D (2017) Basic and applied research on entomopathogenic fungi. In: Lacey LA (ed) Microbial control of insect and mite pests. Academic, San Diego, CA, pp 69–89

    Chapter  Google Scholar 

  • Charnley AK, Collins SA (2007) 10 Entomopathogenic fungi and their role in pest control. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships, 2nd edn. Springer, Berlin, Heidelberg, pp 159–187

    Google Scholar 

  • Culliney T (2014) Crop losses to arthropods. In: Pimentel D, Peshin R (eds) Integrated pest management. Springer, Dordrecht, pp 201–225

    Chapter  Google Scholar 

  • Da Silva P, Jouvensal L, Lamberty M, Bulet P, Caille A, Vovelle F (2003) Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger. Protein Sci 12(3):438–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Da Silva RA, Quintela ED, Mascarin GM, Pedrini N, Liao LM, Ferri PH (2015) Unveiling chemical defense in the rice stalk stink bug against the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 127:93–100

    Article  PubMed  CAS  Google Scholar 

  • Damalas CA, Koutroubas SD (2018) Current status and recent developments in biopesticide use. Agriculture 8:13. https://doi.org/10.3390/agriculture8010013

    Article  CAS  Google Scholar 

  • De Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation type. Biol Control 43:237–256

    Article  CAS  Google Scholar 

  • Delgado PAM, Murcia OP (2011) Hongos entomopatógenos: uma alternativa para la obtención de Biopesticidas. Ambi-Agua 6:77–90

    Article  Google Scholar 

  • Dewel RA, Joines JD, Bond JJ (1985) A new chytridiomycete parasitizing the tardigrade Milnesium tardigradum. Can J Bot 63(9):1525–1534. https://doi.org/10.1139/b85-211

    Article  Google Scholar 

  • Doberski JW, Tribe HT (1980) Isolation of entomogenous fungi from elm bark and soil with reference to ecology of Beauveria bassiana and Metarhizium anisopliae. Trans Br Mycol Soc 74:95–100. https://doi.org/10.1016/S0007-1536(80)80013-1

    Article  Google Scholar 

  • Dong Y, Taylor HE, Dimopoulos G (2006) AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 4(7):e229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donzelli BGG, Krasnoff SB (2016) Molecular genetics of secondary chemistry in Metarhizium Fungi. In: Lovett B, Leger RJS (eds) Advances in genetics, vol 94. Elsevier, Amsterdam, pp 365–436

    Google Scholar 

  • Dromph KM (2001) Dispersal of entomopathogenic fungi by collembolans. Soil Biol Biochem 33(15):2047–2051. https://doi.org/10.1016/s0038-0717(01)00130-4

    Article  CAS  Google Scholar 

  • Eilenberg J (2000) Entomophthorales on Diptera. In: Papp L, Darvas B (eds) Manual of Palaearctic Diptera. Science Herald, Budapest, pp 521–533

    Google Scholar 

  • Evans HC (1988) Coevolution of entomogenous fungi and their insect hosts. In: Pirozynski KA, Hawksworth DL (eds) Coevolution of fungi with plants and animals. Academic, Nueva York, EEUU, pp 149–171

    Google Scholar 

  • Evans CJ, Banerjee U (2003) Transcriptional regulation of hematopoiesis in Drosophila. Blood Cells Mol Dis 30(2):223–228

    Article  CAS  PubMed  Google Scholar 

  • Evans HC, Elliot SL, Barreto RW (2018) Entomopathogenic fungi and their potential for the management of Aedes aegypti (Diptera: Culicidae) in the Americas. Mem Inst Oswaldo Cruz 113(3):206–214. https://doi.org/10.1590/0074-02760170369

    Article  PubMed  PubMed Central  Google Scholar 

  • Falagas ME, Grammatikos AP, Michalopoulos A (2008) Potential of oldgeneration antibiotics to address current need for new antibiotics. Expert Rev Anti Infect Ther 6:593–600

    Article  PubMed  Google Scholar 

  • Fan Y, Liu X, Keyhani NO et al (2017) Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death. Proc Natl Acad Sci U S A 114:E1578–E1586. https://doi.org/10.1073/pnas.1616543114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanti ALP, Alves LFA (2013) Entomopathogenic fungi isolates to control the borer of yerba mate (Hedypathes betulinus) Klug (Coleoptera; Cerambycidae). Semina Cienc Agrar 34(4):1467–1478. https://doi.org/10.5433/1679-0359.2013v34n4p1467

    Article  Google Scholar 

  • Faria M, Hajek AE, Wraight SP (2009) Imbibitional damage in conidia of the entomopathogenic fungi Beauveria bassiana, Metarhizium acridum, and Metarhizium anisopliae. Biol Control 51(3):346–354. https://doi.org/10.1016/j.biocontrol.2009.06.012

    Article  Google Scholar 

  • Faria M, Hotchkiss JH, Hajek AE, Wraight SP (2010) Debilitation in conidia of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae and implication with respect to viability determinations and mycopesticide quality assessments. J Invertebr Pathol 105:74–83. https://doi.org/10.1016/j.jip.2010.05.011

    Article  PubMed  Google Scholar 

  • Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert WF, Hetru C, Hoffmann JA (1994) Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 269(52):33159–33163

    Article  CAS  PubMed  Google Scholar 

  • Feng P, Shang Y, Cen K, Wang C (2015) Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci 112(36):11365–11370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes ÉK, Keyser CA, Rangel DE, Foster RN, Roberts DW (2010) CTC medium: a novel dodine-free selective medium for isolating entomopathogenic fungi, especially Metarhizium acridum, from soil. Biol Control 54(3):197–205. https://doi.org/10.1016/j.biocontrol.2010.05.009

    Article  Google Scholar 

  • Fernandes EG, Valério HM, Borges MAS, Mascarin GM, Silva CE, Van Der Sand ST (2013) Selection of fungi for the control of Musca domestica in aviaries. Biocontrol Sci Technol 23(11):1256–1266. https://doi.org/10.1080/09583157.2013.826343

    Article  Google Scholar 

  • Ferreira JMS (2004) Protocolo para a produção massal de fungos entomopatogênicos 1: Beauveria bassiana (Vuill.). In: Boletim de Pesquisa e Desenvolvimento, vol 3. Embrapa Tabuleiros Costeiros, Aracaju, pp 1–28

    Google Scholar 

  • Freitas AF, Loureiro ES, Almeida MEB, Pessoa LGA (2014) Yield of conidia and germination of different isolates of Metarhizium anisopliae (Metsch) Sorok. (Ascomycota: Clavicipitaceae) grown on rice. Arq Inst Biol 81:75–78. https://doi.org/10.1590/S1808-16572014000100014

    Article  Google Scholar 

  • Gandarilla-Pacheco FL, Galán-Wong LJ, López-Arroyo JI, Rodríguez-Guerra R, Quintero-Zapata I (2013) Optimization of pathogenicity tests for selection of native isolates of entomopathogenic fungi isolated from Citrus growing areas of México on adults of Diaphorina citri Kuwayama (Hemiptera: Liviidae). Fla Entomol 96:187–195. https://doi.org/10.1653/024.096.0125

    Article  Google Scholar 

  • Gleason FH, Lilje O (2009) Structure and function of fungal zoospores: ecological implications. Fungal Ecol 2:53–59. https://doi.org/10.1016/j.funeco.2008.12.002

    Article  Google Scholar 

  • Gleason FH, Marano AV, Johson P, Martin WW (2010) Blastocladian parasites of invertebrates. Fungal Biol Rev 24:56–67

    Article  Google Scholar 

  • Goble TA, Dames JF, Hill MP, Moore SD (2010) The effects of farming system, habitat type and bait type on the isolation of entomopathogenic fungi from citrus soils in the eastern Cape Province, South Africa. BioControl 55:399–412. https://doi.org/10.1007/s10526-009-9259-0

    Article  Google Scholar 

  • Goettel MS, Inglis GD (1997) Fungi: hyphomycetes. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic, New York, NY, pp 213–249. https://doi.org/10.1016/B978-012432555-5/50013-

    Chapter  Google Scholar 

  • Goettel MS, Ellenberg J, Glare T (2010) 11 Entomopathogenic fungi and their role in regulation of insect populations. In: Gilbert LI, Gill SS (eds) Insect control: biological and synthetic agents. Elsevier, London, pp 387–437

    Google Scholar 

  • Greenfield BPJ, Lord AM, Dudley E, ButtTM (2014) Conidia of the insect pathogenic fungus, Metarhizium anisopliae, fail to adhere to mosquito larval cuticle. R Soc Open Sci 1:140193. https://doi.org/10.1098/rsos.140193

    Article  PubMed  PubMed Central  Google Scholar 

  • Gryganskyi AP, Humber RA, Smith ME, Hodge K, Huang B, Voigt K, Vilgalys R (2013) Phylogenetic lineages in Entomophthoromycota. Persoonia 30:94–105. https://doi.org/10.3767/003158513X666330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gul HT, Saeed S, Khan FA (2014) Entomopathogenic fungi as effective insect pest management tactic: a review. Appl Sci Bus Econ 1:10–18

    Google Scholar 

  • Haelewaters D, Boer P, Noordijk J (2015) Studies of Laboulbeniales (Fungi, Ascomycota) on Myrmica ants: Rickia wasmannii in the Netherlands. J Hymenopt Res 44(June 11):39–47. https://doi.org/10.3897/jhr.44.4951

    Article  Google Scholar 

  • Hajek AE, Delalibera I (2010) Fungal pathogens as classical biological control agents against arthropods. BioControl 55:147–158

    Article  Google Scholar 

  • He M, Zhao RL, Hyde KD et al (2019) Notes, outline and divergence times of Basidiomycota. Fungal Divers 99:105–367. https://doi.org/10.1007/s13225-019-00435-4

    Article  Google Scholar 

  • Hibbett D, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James TY, Kirk PM et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hultmark D (2003) Drosophila immunity: paths and patterns. Curr Opin Immunol 15(1):12–19

    Article  CAS  PubMed  Google Scholar 

  • Humber RA (1997) Fungi-Identification. In: Lacey L (ed) Manual of techniques in insect pathology. Academic, London, pp 153–185

    Chapter  Google Scholar 

  • Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invertebr Pathol 98:262–266

    Article  PubMed  Google Scholar 

  • Humber RA (2012a) Entomophthoromycota: a new phylum and reclassification for entomophthoroid fungi. Mycotaxon 120:477–492

    Article  Google Scholar 

  • Humber RA (2012b) Identification of entomopathogenic fungi. In: Lacey LA (ed) Manual of techniques in invertebrate pathology. Academic, London, pp 151–187

    Chapter  Google Scholar 

  • Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT, Chaiyasen A (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136

    Article  Google Scholar 

  • Inglis GD, Enkerli JUERG, Goettel MS (2012) Laboratory techniques used for entomopathogenic fungi: Hypocreales. In: Manual of techniques in invertebrate pathology, vol 2, pp 18–53

    Google Scholar 

  • Jackson MA, Dunlap CA, Jaronski ST (2010) Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl 55:129–145. https://doi.org/10.1007/978-90-481-3966-8_10

    Article  Google Scholar 

  • James TY, Porter TM, Martin WW (2014) 7 Blastocladiomycota. In: McLaughlin D, Spatafora J (eds) Systematics and evolution. The Mycota (a comprehensive treatise on Fungi as experimental Systems for Basic and Applied Research), vol 7A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55318-9_7

    Chapter  Google Scholar 

  • Jaronski ST, Mascarin GM (2017) Mass production of fungal entomopathogens. In: Lacey LA (ed) Microbial control of insects and mite pests. Academic, Amsterdam, pp 141–155

    Chapter  Google Scholar 

  • Jerônimo GH, Jesus AL, Marano AV, James TY, Souza JI, Rocha SCO, Pires-Zottarelli CLA (2015) Diversidade de Blastocladiomycota e Chytridiomycota do Parque Estadual da Ilha do Cardoso, Cananéia, SP, Brasil. Hoehnea 42:135–163. https://doi.org/10.1590/2236-8906-32/2014

    Article  Google Scholar 

  • Kabaluk JT, Svircev AM, Goettel MS, Woo SG (2010) The use and regulation of microbial pesticides in representative jurisdictions worldwide. IOBC Global, Rome, pp 1–99

    Google Scholar 

  • Karling JS (1981) In: Cramer J (ed) Predominantly holocarpic and eucarpic simple biflagellate Phycomycetes, 2nd edn, 252 p

    Google Scholar 

  • Keller S, Kessler P, Schweizer C (2003) Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metharhizium anisopliae. BioControl 48:307–319

    Article  Google Scholar 

  • Kendrick B (2017) The fifth kingdom: an introduction to mycology, 4th edn. Hackett Publishing, Indianapolis/Cambridge

    Google Scholar 

  • Kepler RM, Luangsa-ard JJ, Hywel-Jones NL et al (2017) A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). Ima Fungus 8:335–353. https://doi.org/10.5598/imafungus.2017.08.02.08

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Skinner M, Parker B (2010) Influence of whey permeate and millet as substrates on thermotolerance of Beauveria bassiana and Metarhizium anisopliae conidia during storage. Biocontrol Sci Tech 20(8):859–863. https://doi.org/10.1080/09583157.2010.486072

    Article  Google Scholar 

  • Kim JC, Lee MR, Kim S, Lee SJ, Park SE, Baek S, Gasmi L, Shin TY, Kim JS (2019) Long-term storage stability of Beauveria bassiana ERL836 granules as fungal biopesticide. J Asia Pac Entomol 22:537–542. https://doi.org/10.1016/j.aspen.2019.04.001

    Article  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of fungi, 10th edn. CABI, Wallingford

    Google Scholar 

  • Kocks C, Cho JH, Nehme N, Ulvila J, Pearson AM, Meister M, Strom C, Conto SL, Hetru C, Stuart LM (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123(2):335–346

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J Fertil Pestic 6:e129. https://doi.org/10.4172/jbfbp.1000e129

    Article  Google Scholar 

  • Lacey L, Grzywacz D, Shapiro-Ilan D, Frutos R, Brownbridge M, Goettel M (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  PubMed  Google Scholar 

  • Lamberty M, Ades S, Uttenweiler-Joseph S, Brookhart G, Bushey D, Hoffmann JA, Bulet P (1999) Insect immunity isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J Biol Chem 274:9320–9326

    Article  CAS  PubMed  Google Scholar 

  • Lanot R, Zachary D, Holder F, Meister M (2001) Postembryonic hematopoiesis in Drosophila. Dev Biol 230:243–257

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  CAS  PubMed  Google Scholar 

  • Liu ZY, Milner RJ, McRae CF, Lutton GG (1993) The use of dodine in selective media for the isolation of Metarhizium spp. from soil. J Invertebr Pathol 62:248–251

    Article  Google Scholar 

  • Lopes RS, Svedese VM, Portela APAS, Albuquerque AC, Luna-Alves Lima EA (2011) Virulence and biological aspects of Isaria javanica (Frieder & Bally) Samson & Hywell-Jones in Coptotermes gestroi (Wasmann) (Isoptera: Rhinotermitidae). Arq Inst Biol 78:565–572

    Article  Google Scholar 

  • Lopes RS, Lima G, Correia MTS, Costa AF, Luna-Alves Lima EA, Lima VLM (2017) The potential of Isaria spp. as a bioinsecticide for the biological control of Nasutitermes corniger. Biocontrol Sci Tech 27(9):1038–1048. https://doi.org/10.1080/09583157.2017.1380163

    Article  Google Scholar 

  • Lopes RS, Martins MCB, Oliveira LG et al (2020) Termiticidal activity of Libidibia ferrea var. ferrea and of the association with Isaria spp. against Nasutitermes corniger. J Agric Sci 12:159–170. https://doi.org/10.5539/jas.v12n1p159

    Article  Google Scholar 

  • Loureiro ES, Batista Filho A, Almeida JEM, Pessoa LGA (2005) Produção de isolados de Metarhizium anisopliae, selecionados para o controle de Mahanarva fimbriolata (Stal, 1854). Arq Inst Biol 72:469–472

    Article  Google Scholar 

  • Lu H-L, Leger RS (2016) Insect immunity to entomopathogenic fungi. In: Advances in genetics, vol 94. Elsevier, Amsterdam, pp 251–285

    Google Scholar 

  • Lu H-L, Wang JB, Brown MA, Euerle C, Leger RJS (2015) Identification of Drosophila mutants affecting defense to an entomopathogenic fungus. Sci Rep 5:12350

    Article  PubMed  PubMed Central  Google Scholar 

  • Luz C, Bastos Netto MC, Rocha LFN (2007) In vitro susceptibility to fungicides by invertebrate-pathogenic and saprobic fungi. Mycopathologia 164:39–47

    Article  CAS  PubMed  Google Scholar 

  • Maina UM, Galadima IB, Gambo FM, Zakaria D (2018) A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J Entomol Zool Stud 6:27–32

    Google Scholar 

  • Mannino MC, Huarte-Bonnet C, Davyt-Colo B, Pedrini N (2019) Is the insect cuticle the only entry gate for fungal infection? Insights into alternative modes of action of entomopathogenic fungi. J Fungi 5:33

    Article  CAS  Google Scholar 

  • Marrone PG (2014) The market and potential for biopesticides. In: Gross AD, Coats JR, Seiber JN, Duke SO (eds) Biopesticides: state of the art and future opportunities. American Chemical Society, Washington, DC, pp 245–258

    Chapter  Google Scholar 

  • Marrone PG (2019) Pesticidal natural products–status and future potential. Pest Manag Sci 75:2325–2340

    CAS  PubMed  Google Scholar 

  • Martin WW (1978) Two additional species of Catenaria (Chytridiomycetes, Blastocladiales) parasitic in midge eggs. Mycologia 70:461–467

    Article  Google Scholar 

  • Mascarin GM, Jaronski ST (2016) The production and uses of Beauveria bassiana as a microbial insecticide. World J Microbiol Biotechnol 32:1–26

    Article  CAS  Google Scholar 

  • Mascarin GM, Quintela ED (2013) Técnica de Produção do Fungo Entomopatogênico Metarhizium anisopliae para Uso em Controle Biológico. Documentos, vol 289. Embrapa Arroz e Feijão, pp 1–17

    Google Scholar 

  • Mascarin GM, Alves SB, Lopes RB (2010) Culture media selection for mass production of Isaria fumosorosea and Isaria farinosa. Braz Arch Biol Technol 53(4):753–761. https://doi.org/10.1590/S1516-89132010000400002

    Article  Google Scholar 

  • Mascarin GM, Kobori NN, Quintela ED, Delalibera I Jr (2013) The virulence of entomopathogenic fungi against Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) and their conidial production using solid substrate fermentation. Biol Control 66(3):209–218. https://doi.org/10.1016/j.biocontrol.2013.05.001

    Article  Google Scholar 

  • Mascarin GM, Lopes RB, Delalibera Í, Fernandes ÉKK, Luz C, Faria M (2019) Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J Invertebr Pathol 165:46–53. https://doi.org/10.1016/j.jip.2018.01.001

    Article  PubMed  Google Scholar 

  • Matsuura K, Tanaka C, Nishida T (2000) Symbiosis of a termite and a sclerotium-forming fungus: Sclerotia mimic termite eggs. Ecol Res 15:405–414

    Article  Google Scholar 

  • Meyling NV (2007) Methods for isolation of entomopathogenic fungi from the soil environment-laboratory manual. University of Copenhagen, Denmark, p 18. http://orgprints.org/11200

    Google Scholar 

  • Mishra J, Tewari S, Singh S, Arora NK (2015) Biopesticides: where we stand? In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 37–75

    Google Scholar 

  • Mora MAE, Castilho AMC, Fraga ME (2017) Classification and infection mechanism of entomopathogenic fungi. Arq Inst Biol 84:1–10

    Google Scholar 

  • Muñiz-Paredes F, Miranda Hernández F, Loera O (2017) Production of conidia by entomopathogenic fungi: from inoculants to final quality tests. World J Microbiol Biotechnol 33(57):1–9. https://doi.org/10.1007/s11274-017-2229-2

    Article  CAS  Google Scholar 

  • Naqqash MN, Gokçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373

    Article  PubMed  Google Scholar 

  • Naranjo-Ortiz MA, Gabaldón T (2019) Fungal evolution: diversity, taxonomy and phylogeny of the fungi. Biol Rev 94:2101–2137. https://doi.org/10.1111/brv.12550

    Article  PubMed  Google Scholar 

  • Nehme NT, Liégeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, Ewbank JJ, Ferrandon D (2007) A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog 3(11):e173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olson S (2015) An analysis of the biopesticide market now and where it is going. Outlooks Pest Manag 26:203–206

    Article  Google Scholar 

  • Osta MA, Christophides GK, Vlachou D, Kafatos FC (2004) Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J Exp Biol 207(15):2551–2563

    Article  CAS  PubMed  Google Scholar 

  • Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270

    Article  CAS  PubMed  Google Scholar 

  • Ozdal M, Incekara U, Polat A, Gur O, Tasar EBK, Erhan G (2012) Isolation of filamentous fungi associated with two common edible aquatic insects, Hydrophilus piceus and Dytiscus marginalis. J Microbiol Biotechnol Food Sci 9(5):95–105

    Google Scholar 

  • Pal S, Leger RJS, Wu LP (2007) Fungal peptide Destruxin a plays a specific role in suppressing the innate immune response in Drosophila melanogaster. J Biol Chem 282(12):8969–8977

    Article  CAS  PubMed  Google Scholar 

  • Passos EM, Albuquerque AC, Marques EJ, Teixeira VW, Silva CC, Oliveira MAP (2014) Effects of Isaria (Persoon) isolates on the subterranean termite Coptotermes gestroi (Wasmann) (Isoptera: Rhinotermitidae). Arq Inst Biol 81(3):232–237. https://doi.org/10.1590/1808-1657000642012

    Article  Google Scholar 

  • Pedrini N, Villaverde M, Fuse C, Dal Bello G, Juárez M (2010) Beauveria bassiana infection alters colony development and defensive secretions of the beetles Tribolium castaneum and Ulomoides dermestoides (Coleoptera: Tenebrionidae). J Econ Entomol 103:1094–1099

    Article  CAS  PubMed  Google Scholar 

  • Pell JK, Eilenberg J, Hajek AE, Steinkraus DC (2001) Biology, ecology and pest management potential of Entomophthorales. In: Butt MT, Jackson C, Maga N (eds) Fungi as biocontrol agents. CAB International, Wallingford, pp 71–115

    Google Scholar 

  • Pell JK, Hannam JJ, Steinkraus DC (2010) Conservation biological control using fungal entomopathogens. In: The ecology of fungal entomopathogens. Springer, Dordrecht, pp 187–198

    Google Scholar 

  • Pestano F, Liverpool E, Gomathinayagam S, Ansari A (2017) Investigation of entomopathogenic fungi from insects at University of Guyana Turkeyen campus. Curr Trends Biomed Eng Biosci 5:001–005. https://doi.org/10.19080/CTBEB.2017.05.555656

    Article  Google Scholar 

  • Pringle A, Patek SN, Fischer M, Stolze J, Money NP (2005) The captured launch of a ballistospore. Mycologia 97(4):866–871. https://doi.org/10.1080/15572536.2006.11832777

    Article  PubMed  Google Scholar 

  • Qu S, Wang S (2018) Interaction of entomopathogenic fungi with the host immune system. Dev Comp Immunol 83:96–103

    Article  CAS  PubMed  Google Scholar 

  • Rafaluk-Mohr C, Wagner S, Joop G (2018) Cryptic changes in immune response and fitness in Tribolium castaneum as a consequence of coevolution with Beauveria bassiana. J Invertebr Pathol 152:1–7

    Article  PubMed  Google Scholar 

  • Rangel DE, Alston DG, Roberts DW (2008) Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycol Res 112(11):1355–1361. https://doi.org/10.1016/j.mycres.2008.04.011

    Article  PubMed  Google Scholar 

  • Rocha LFN, Luz C (2009) Utility of six fungicides for selective isolation of Evlachovaea spp. and Tolypocladium cylindrosporum. Mycopathologia 167:341–350

    Article  CAS  PubMed  Google Scholar 

  • Rosales C (2005) Molecular mechanisms of phagocytosis. Eurekah.com and Springer Science+ Business Media, New York

    Book  Google Scholar 

  • Rosales C (2011) Phagocytosis, a cellular immune response in insects. Invertebr Surviv J 8(1):109–131

    Google Scholar 

  • Rossman AY (1978) Podonectria, a genus in the Pleosporales on scale insects. Mycotaxon 7:163–182

    Google Scholar 

  • Samson RA, Evans HC, Latgé JP (1988) Atlas of entomopathogenic fungi. Springer-Verlag GmbH.KG, Berlin, Alemanha, 197 p

    Book  Google Scholar 

  • Sánchez-Pérez Andersen M, Magan N, Mead A, Chandler D (2006) Development of a population-based threshold model of conidial germination for analyzing the effects of physiological manipulation on the stress tolerance and infectivity of insect pathogenic fungi. Environ Microbiol 8:1625–1634

    Article  CAS  Google Scholar 

  • Sánchez-Pérez LC, Barranco-Florido JE, Rodríguez-Navarro S, Cervantes-Mayagoitia JF, Ramos-López MÁ (2014) Enzymes of entomopathogenic fungi, advances and insights. Adv Enzyme Res 2:65–76. https://doi.org/10.4236/aer.2014.22007

    Article  CAS  Google Scholar 

  • Sandhu SS, Shukla H, Aharwal RP, Kumar S, Shukla S (2017) Efficacy of entomopathogenic fungi as green pesticides: current and future prospects. In: Panpatte DG et al (eds) Microorganisms for green revolution, microorganisms for sustainability, vol 6. Springer, Singapore, pp 327–349

    Chapter  Google Scholar 

  • Santoro PH, Neves PMOJ, Silva RZ, Akimi S, Janaína Zorzetti J (2005) Beauveria bassiana (Bals.) Vuill. Spores production in biphasic process utilizing different liquid media. Semina Ciênc Agrár 26(3):313–320. https://doi.org/10.5433/1679-0359.2005v26n3p313

    Article  Google Scholar 

  • Santoro PH, Neves PMOJ, Alexandre TM, Alves LFA (2007) Interferência da metodologia nos resultados de bioensaios de seleção de fungos entomopatogênicos para o controle de insetos. Pesq Agropec Bras 42(4):483–489. https://doi.org/10.1590/S0100-204X2007000400005

    Article  Google Scholar 

  • Santos ACS, Oliveira RLS, Costa AF, Tiago PV, Oliveira NT (2016) Controlling Dactylopius opuntiae with Fusarium incarnatum–equiseti species complex and extracts of Ricinus communis and Poincianella pyramidalis. J Pestic Sci 89:539–547

    Article  Google Scholar 

  • Schabel S (1976) Oral infection of Hylobius pales by Metarhizium anisopliae. J Invertebr Pathol 383:377–383

    Article  Google Scholar 

  • Scholte E-J, Knols BGJ, Samson RA, Takken W (2004) Entomopathogenic fungi for mosquito control: a review. J Insect Sci 4:1–24. https://doi.org/10.1093/jis/4.1.19

    Article  Google Scholar 

  • Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L (2003) Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, galleria mellonella. Arch Insect Biochem Physiol 53(3):125–133

    Article  CAS  PubMed  Google Scholar 

  • Shakeel M, Xu X, Xu J, Zhu X, Li S, Zhou X, Yu J, Xu X, Hu Q, Yu X (2017) Identification of immunity-related genes in Plutella xylostella in response to fungal peptide destruxin a: RNA-Seq and DGE analysis. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Shakeel M, Xu X, Xu J, Li S, Yu J, Zhou X, Xu X, Hu Q, Yu X, Jin F (2018) Genome-wide identification of Destruxin A-responsive immunity-related microRNAs in diamondback moth, Plutella xylostella. Front Immunol 9:185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma L, Oliveira I, Torres L, Marques G (2018) Entomopathogenic fungi in Portuguese vineyards soils: suggesting a ‘galleria-Tenebrio-bait method’as bait-insects galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (robertsii) and Beauveria (bassiana). MycoKeys 38:1–23. https://mycokeys.pensoft.net/issue/1534/

    Article  Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Article  Google Scholar 

  • Shin TY, Choi JB, Bae SM, Cha YR, Oh JM, Koo HN, Woo SD (2009) Isolation and identification of entomopathogenic fungus from the pine wilt disease vector, Monochamus alternatus Hope (Coleoptera: Cerambycidae) in Korea. Int J Ind Entomol 18:125–129

    Google Scholar 

  • Silva APAP, Alves RT, Lima EALA, Lima VLM (2015) Bioformulations in pest control—a review. Annu Res Rev Biol 5(6):535–543. https://doi.org/10.9734/ARRB/2015/12395

    Article  Google Scholar 

  • Silva APS, Cunha RX, Bezerra JDP, Brito TGS, Fonseca CSM, Santos IP, Lima VLM (2020) Secondary metabolites by endophytic fungi: potential for bio-based products development. In: Chaurasia PK, Bharati SL (eds) Research advances in the fungal world: culture, isolation, identification, classification, characterization, properties and kinetics, 1st edn. Nova Science, New York, pp 115–137. http://novapublishers.com/shop/research-advances-in-the-fungal-world-culture-isolation-identification-classification-characterization-properties-and-kinetics/

    Google Scholar 

  • Skinner M, Parker BL, Kim JS (2014) Role of entomopathogenic fungi. In: Abrol DP (ed) Integrated pest management. Academic, Cambridge, pp 169–191

    Chapter  Google Scholar 

  • Sosa-Gomez DR, Lastra CCL, Humber RA (2010) An overview of arthropod-associated fungi from Argentina and Brazil. Mycopathologia 170:61–76

    Article  PubMed  Google Scholar 

  • Sparrow FK (1960) Aquatic Phycomycetes, 2nd rev edn. University of Michigan Press, Ann Arbor, MI

    Book  Google Scholar 

  • Srivastava CN, Maurya P, Preeti Sharma P, Mohan LM (2009) Prospective role of insecticides of fungal origin: review. Entomol Res 39:341–355. https://doi.org/10.1111/j.1748-5967.2009.00244.x

    Article  Google Scholar 

  • Strand MR (2008) The insect cellular immune response. Insect Sci 15(1):1–14

    Article  CAS  Google Scholar 

  • Sun J, Fuxa JR, Henderson G (2002) Sporulation of Metarhizium anisopliae and Beauveria bassiana on Coptotermes formosanus and in vitro. J Invertebr Pathol 81:78–85. https://doi.org/10.1016/S0022-2011(02)00152-0

    Article  PubMed  Google Scholar 

  • Sung G-H, Hywel-Jones NL, Sung J-M, Luangsa-Ard JJ, Srestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 7:55–59

    Google Scholar 

  • Svedese VM, Tiago PV, Bezerra JDP, Paiva LM, Luna-Alves Lima EA, Porto ALF (2013) Pathogenicity of Beauveria bassiana and production of cuticle-degrading enzymes in the presence of Diatraea saccharalis cuticle. Afr J Biotechnol 12(46):6491–6497. https://doi.org/10.5897/AJB2013.11972

    Article  Google Scholar 

  • Tanzini M, Alves S, Setten A, Augusto N (2001) Compatibilidad de agent estensoactivos com Beauveria bassiana y Metarhizium anisopliae. Manejo Integrado de Plagas 59:15–18

    Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Kõljalg U et al (2018) High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159

    Article  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 243–282

    Chapter  Google Scholar 

  • Thomazoni D, Formentini MA, Alves LFA (2014) Patogenicity of entomopathogenic fungi to Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Arq Inst Biol 81:126–133. https://doi.org/10.1590/1808-1657001162012

    Article  Google Scholar 

  • Tretter ED, Johnson EM, Benny GL, Lichtwardt RW, Wang Y, Kandel P, Novak SJ, Smith JF, White MM (2014) An eight-gene molecular phylogeny of the Kickxellomycotina, including the first phylogenetic placement of Asellariales. Mycologia 106(5):912–935

    Article  CAS  PubMed  Google Scholar 

  • Tzou P, Reichhart J-M, Lemaitre B (2002) Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc Natl Acad Sci 99(4):2152–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Pell JK (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2(4):149–159. https://doi.org/10.1016/j.funeco.2009.05.001

    Article  Google Scholar 

  • Vega FE, Meyling NV, Luangsa-Ard JJ, Blackwell M (2012) Fungal entomopathogens. In: Vega F, Kaya HK (eds) Insect pathology, 2nd edn. Academic, San Diego, CA, pp 171–220

    Chapter  Google Scholar 

  • Vey A, Matha V, Dumas C (2002) Effects of the peptide mycotoxin destruxin E on insect haemocytes and on dynamics and efficiency of the multicellular immune reaction. J Invertebr Pathol 80(3):177–187

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Leger RJS (2006) A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci 103(17):6647–6652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Leger RJS (2007) The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell 6:808–816. https://doi.org/10.1128/EC.00409-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warcup JH (1950) The soil-plate method for isolation of fungi from soil. Nature 166:117e118

    Article  Google Scholar 

  • Webster S, Mitchell PJ, Hampson NA, Dyson JI (1984) A short review of electrocrystallization and its applications to the lead-acid battery. Surf Technol 23:105–116. https://doi.org/10.1016/0376-4583(84)90117-1

    Article  CAS  Google Scholar 

  • Wei G, Lai Y, Wang G, Chen H, Li F, Wang S (2017) Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci U S A 114:5994–5999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiser J, Batko A (1966) A new parasite of Culex pipiens L., Entomophthora destruens sp. nov. (Phycomycetes, Entomophthoraceae). Folia Parasitol 13:144–149

    Google Scholar 

  • Wijayawardene NN, Pawłowska J, Letcher PM et al (2018) Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). Fungal Divers 92:43–129

    Article  Google Scholar 

  • Xu J, Xu X, Shakeel M, Li S, Wang S, Zhou X, Yu J, Xu X, Yu X, Jin F (2017) The entomopathogenic fungi Isaria fumosorosea plays a vital role in suppressing the immune system of Plutella xylostella: RNA-Seq and DGE analysis of immunity-related genes. Front Microbiol 8:1421

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao RL, Li GJ, Sánchez-Ramírez S, Stata M, Yang ZL, Wu G et al (2017) A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. Fungal Divers 84:43–74. https://doi.org/10.1007/s13225-017-0381-5

    Article  Google Scholar 

  • Zimmermann G (1986) The galleria bait method for detection of entomopathogenic fungi in soil. J Appl Entomol 102:213–215

    Article  Google Scholar 

  • Zimmermann G (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Tech 17(6):553–596

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Lucia de Menezes Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santos, A.C. et al. (2022). Entomopathogenic Fungi: Current Status and Prospects. In: Mandal, S.D., Ramkumar, G., Karthi, S., Jin, F. (eds) New and Future Development in Biopesticide Research: Biotechnological Exploration. Springer, Singapore. https://doi.org/10.1007/978-981-16-3989-0_2

Download citation

Publish with us

Policies and ethics