Skip to main content

Crop Losses to Arthropods

  • Chapter
  • First Online:
Integrated Pest Management

Abstract

Arthropods destroy an estimated 18–26 % of annual crop production worldwide, at a value of more than $ 470 billion. The greater proportion of losses (13–16 %) occurs in the field, before harvest, and losses have been heaviest in developing countries. With the Earth’s human population expected to reach 10 billion by the end of the current century, raising agricultural productivity through the prevention of crop losses to pests has assumed considerable urgency. The techniques employed in crop loss assessment provide a framework useful in identifying the causes and magnitude of crop losses, and a basis for the evaluation of control options. Crop losses to arthropods have been reported to be lower in traditional than in modern, industrial agriculture, and are thought to result from the more environmentally sound and sustainable practices employed in traditional agriculture. Many of the pest problems in modern agriculture have arisen through an over-reliance on synthetic chemicals for pest control. More environmentally sound pest control practices not only are more sustainable, but may provide greater economic benefits as well. The return per dollar invested in ecologically-based biological and cultural pest controls has been estimated to range from $ 30 to $ 300, significantly higher than the $ 4 estimated for control based on synthetic pesticides. Crop losses to pests must be reduced in ways that are compatible with sustainable production, which requires pest control to be approached in a holistic manner with a focus on the entire agroecosystem. Key to averting or minimizing crop losses to pests is a commitment, by government or other entities, to collect the data, on which reliable estimates of losses are based.

…little attention has, comparatively, been paid to those noxious animals which annually consume an amount of produce that sets calculation at defiance; and, indeed, if an approximation could be made to the quantity thus destroyed, the world would remain sceptical of the result obtained, considering it too marvellous to be received as truth J. Curtis (1860)

The struggle between man and insects began long before the dawn of civilization, has continued without cessation to the present time, and will continue, no doubt, as long as the human race endures. It is due to the fact that both men and certain insect species constantly want the same things at the same time…Here and there a truce has been declared, a treaty made, and even a partnership established, advantageous to both parties to the contract—as with the bees and silkworms, for example; but wherever their interests and ours are diametrically opposed, the war still goes on and neither side can claim a final victory. If they want our crops they still help themselves to them…Not only is it true that we have not really won the fight with the world of insects, but we may go farther and say that by our agricultural methods, by the extension of our commerce, and by other means connected with the development of our civilization, we often actually aid them most effectively in their competition with ourselves S.A. Forbes (1915)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Rahman, A. G., Abd El-Hafez, A. M., El-Sawar, B. M., Refaie, B. M., & Imam, A. I. (2008). Efficacy of the egg parasitoid, Trichogramma evanescens West. in suppressing spiny bollworm, Earias insulana (Boisd.) infestation in El-Farafra cotton fields, New Valley Governorate, Egypt. Egyptian Journal of Biological Pest Control, 18(2), 265–269.

    Google Scholar 

  • Ahmedani, M. S., Shagufta, N., Aslam, M., & Hussnain, S. A. (2010). Psocid: A new risk for global food security and safety. Applied Entomology and Zoology, 45(1), 89–100.

    Google Scholar 

  • Altieri, M. A. (1995). Agroecology: The Science of Sustainable Agriculture (2nd ed.). Boulder: Westview.

    Google Scholar 

  • Andow, D. A. (1991a). Vegetational diversity and arthropod population response. Annual Review of Entomology, 36, 561–586.

    Google Scholar 

  • Andow, D. A. (1991b). Yield loss to arthropods in vegetationally diverse agroecosystems. Environmental Entomology, 20(5), 1228–1235.

    Google Scholar 

  • Andow, D. A., & Hidaka, K. (1989). Experimental natural history of sustainable agriculture: Syndromes of production. Agriculture, Ecosystems and Environment, 27(1–4), 447–462.

    Google Scholar 

  • Anonymous. (1958a). Some insect loss estimates for 1957. Cooperative Economic Insect Report, 8(11), 205–206.

    Google Scholar 

  • Anonymous. (1958b). Crop pests make history. World Crops, 10(2), 52–57.

    Google Scholar 

  • Anonymous. (1961). Losses and production costs attributable to insects and related arthropods—1960. Cooperative Economic Insect Report, 11(47), 1062–1081.

    Google Scholar 

  • Anonymous. (1966). Estimated losses and production costs attributed to insects and related arthropods—1965. Cooperative Economic Insect Report, 16(42), 997–1007.

    Google Scholar 

  • Anonymous. (1967). Estimated losses and production costs attributed to insects and related arthropods—1966. Cooperative Economic Insect Report, 17(45), 991–1007.

    Google Scholar 

  • Anonymous. (1968). Estimated losses and production costs attributed to insects and related arthropods—1967. Cooperative Economic Insect Report, 18(43), 1012–1028.

    Google Scholar 

  • Anonymous. (1969). Estimated losses and production cost attributed to insects and related arthropods—1968. Cooperative Economic Insect Report, 19(50), 878–893.

    Google Scholar 

  • Anonymous. (1971). Estimated losses and production cost attributed to insects and related arthropods—1970. Cooperative Economic Insect Report, 21(45–48), 759–772.

    Google Scholar 

  • Anonymous. (1973). Estimated losses and production costs attributed to insects and related arthropods—1972. Cooperative Economic Insect Report, 23(49–52), 783–796.

    Google Scholar 

  • Anonymous. (1974). Estimated losses and production costs attributed to insects and related arthropods—1973. Cooperative Economic Insect Report, 24(49–52), 881–903.

    Google Scholar 

  • Anonymous. (1976). Estimated losses and production costs attributed to insects and related arthropods—1975. Cooperative Plant Pest Report, 1(48–52), 875–893.

    Google Scholar 

  • Anonymous. (1978). Estimated losses and production costs attributed to insects and related arthropods—1976. Cooperative Plant Pest Report, 3(11), 91–117.

    Google Scholar 

  • Ayalew, G. (2006). Comparison of yield loss on cabbage from diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) using two insecticides. Crop Protection, 25(9), 915–919.

    CAS  Google Scholar 

  • Bains, S. S., Battu, G. S., & Atwal, A. S. (1976). Distribution of Trogoderma granarium Everts and other stored grain insect pests in Punjab and losses caused by them. Bulletin of Grain Technology, 14(1), 18–29.

    Google Scholar 

  • Becherescu, A. (2009). Efficacy of integrated protection complexes in fighting against the pest Delia antiqua Meig. Journal of Horticulture, Forestry and Biotechnology, 13, 151–154.

    Google Scholar 

  • Berry, S. D., Leslie, G. W., Spaull, V. W., & Cadet, P. (2010). Within-field damage and distribution patterns of the stalk borer, Eldana saccharina (Lepidoptera: Pyralidae), in sugarcane and a comparison with nematode damage. Bulletin of Entomological Research, 100(4), 373–385.

    CAS  PubMed  Google Scholar 

  • Bett, C., & Nguyo, R. (2007). Post-harvest storage practices and techniques used by farmers in semi-arid Eastern and Central Kenya. African Crop Science Conference Proceedings, 8, 1023–1027.

    Google Scholar 

  • Borah, B. K., & Sharma, K. K. (2009). Assessment of losses in yield of black gram caused by Riptortus pedestris Fab. Insect Environment, 14(4), 156–157.

    Google Scholar 

  • Boxall, R. A. (2001). Post-harvest losses to insects—a world overview. International Biodeterioration and Biodegradation, 48(1–4), 137–152.

    Google Scholar 

  • Brown, B. J., & Marten, G. G. (1986). The ecology of traditional pest management in Southeast Asia. In G. G. Marten (Ed.), Traditional Agriculture in Southeast Asia: A Human Ecology Perspective (pp. 241–272). Boulder Colorado, USA: Westview.

    Google Scholar 

  • Brown, L. R. (2004). Outgrowing the Earth: The Food Security Challenge in an Age of Falling Water Tables and Rising Temperatures. New York: W.W. Norton.

    Google Scholar 

  • Bullock, D. G. (1992). Crop rotation. Critical Reviews in Plant Sciences, 11(4), 309–326.

    Google Scholar 

  • Chander, R., & Bhargava, M. C. (2005). Effect of different storage containers on incidence of lesser grain borer, Rhizopertha dominica (Fabr.) in stored barley. Journal of Applied Zoological Researches, 16(1), 102–103.

    Google Scholar 

  • Charlet, L. D., Seiler, G. J., Miller, J. F., Hulke, B. S., & Knodel, J. J. (2009). Resistance among cultivated sunflower germplasm to the banded sunflower moth (Lepidoptera: Tortricidae) in the Northern Great Plains. Helia, 32(51), 1–10.

    Google Scholar 

  • Chiarappa, L. (1981). Establishing the crop loss profile. In L. Chiarappa (Ed.), Crop Loss Assessment Methods—Supplement 3 (pp. 21–24). Farnham Royal, Slough, United Kingdom: Commonwealth Agricultural Bureaux.

    Google Scholar 

  • Chiarappa, L., Chiang, H. C., & Smith, R. F. (1972). Plant pests and diseases: Assessment of crop losses. Science, 176, 769–773.

    CAS  PubMed  Google Scholar 

  • Cox, A. E., & Large, E. C. (1960). Potato Blight Epidemics Throughout the World. USDA Agriculture Handbook No. 174. Washington, D.C.: Government Printing Office.

    Google Scholar 

  • Cramer, H. H. (1967). Plant protection and world crop production. Pflanzenschutz-Nachrichten, 20(1), 1–524.

    Google Scholar 

  • Curtis, J. (1860). Farm Insects: Being the Natural History and Economy of the Insects Injurious to the Field Crops of Great Britain and Ireland. Glasgow, United Kingdom: Blackie and Son.

    Google Scholar 

  • D’Aquino, S., Cocco, A., Ortu, S., & Schirra, M. (2011). Effects of kaolin-based particle film to control Ceratitis capitata (Diptera: Tephritidae) infestations and postharvest decay in citrus and stone fruit. Crop Protection, 30(8), 1079–1086.

    Google Scholar 

  • Day, R. K. (1989). Effect of cocoa pod borer, Conopomorpha cramerella, on cocoa yield and quality in Sabah, Malaysia. Crop Protection, 8(5), 332–339.

    Google Scholar 

  • Delabie, J. H. C., & Cazorla, I. M. (1991). Danos causados por Planococcus citri Risso (Hemiptera: Pseudococcidae) na produção do cacaueiro. Agrotrópica, 3(1), 53–57.

    Google Scholar 

  • Deshmukh, S. S., Goud, K. B., & Giraddi, R. S. (2007). Seasonal incidence and crop loss estimation of pod weevil, Apion amplum (Faust) on greengram, Vigna radiata (L.) Wilczek. Karnataka Journal of Agricultural Sciences, 20(4), 855–856.

    Google Scholar 

  • Deshmukh, S. G., Sureja, B. V., Jethva, D. M., & Chatar, V. P. (2010). Estimation of yield losses by pod borer Helicoverpa armigera (Hubner) on chickpea. Legume Research, 33(1), 67–69.

    Google Scholar 

  • Dhaliwal, G. S., Dhawan, A. K., & Singh, R. (2007). Biodiversity and ecological agriculture: Issues and perspectives. Indian Journal of Ecology, 34(2), 100–109.

    Google Scholar 

  • Domingos Scalon, J., Lopes Avelar, M. B., de Freitas Alves, G., & Sérgio Zacarias, M. (2011). Spatial and temporal dynamics of coffee-leaf-miner and predatory wasps in organic coffee field in formation. Ciência Rural, 41(4), 646–652.

    Google Scholar 

  • Dordolo, M. (2008). Recrudescence des degats d’aiguillonnier des cereales dans le sud-ouest suivi biologique et gestion du risque en interculture. In AFPP—8ème Conférence Internationale sur les Ravageurs en Agriculture (p. 665), Montpellier SupAgro, France, 22–23 October 2008. Association Française de Protection des Plantes (AFPP). Alfortville.

    Google Scholar 

  • Dörtbudak, N., Erdoğan, P., & Aydemir, M. (1999). Orta Anadolu Bölgesi’nde depolanan mercimek ve fasulyede zararlı olan baklagil tohum böceklerinin yayılışı, bulaşma oranı, yoğunlukları ve meydana getirdikleri ürün kayıpları üzerinde araştırmalar. Bitki Koruma Bülteni, 39(1/2), 57–75.

    Google Scholar 

  • ERS. (2010). Which are the top 10 Agricultural Producing States? USDA economic research service. Available via Common Questions About ERS Subject Areas. http://www.ers.usda.gov/AboutERS/FAQs.htm. Accessed Feb 2012.

  • Everly, R. T. (1960). Loss in corn yield associated with the abundance of the corn leaf aphid, Rhopalosiphum maidis, in Indiana. Journal of Economic Entomology, 53(5), 924–932.

    Google Scholar 

  • FAO. (2011a). Food Outlook: Global Market Analysis (November 2011) No. 4, November. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • FAO. (2011b). FAO FAO in the 21st Century: Ensuring Food Security in a Changing World. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • FAO. (2012a). Gross production value (constant 2004–2006 million US$) (USD). Statistics Division, Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/613/DesktopDefault.aspx?PageID=613#ancor. Accessed Feb 2012.

  • FAO. (2012b). FAO Statistical Yearbook 2012: World Food and Agriculture. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Farrell, G., & Schulten, G. G. M. (2002). Larger grain borer in Africa: a history of efforts to limit its impact. Integrated Pest Management Reviews, 7(2), 67–84.

    Google Scholar 

  • Forbes, S. A. (1915). The Insect, the Farmer, the Teacher, the Citizen, and the State. Urbana, Illinois, USA: Illinois State Laboratory of Natural History.

    Google Scholar 

  • Galande, S. M., Ankali, S. M., & Bhoi, P. G. (2005). Effect of sugarcane woolly aphid, Ceratovacuna lanigera Zehntner incidence on cane yield and juice quality. Journal of Applied Zoological Researches, 16(2), 190–191.

    Google Scholar 

  • Gerard, P. W. (1995). Agricultural practices, farm policy, and the conservation of biological diversity. USDI National Biological Service Biological Science Report No. 4. Washington, D.C.: U.S. Fish and Wildlife Service.

    Google Scholar 

  • Gianluppi, D., Gianluppi, V., & Smiderle, O. J. (2002). Recomendações técnicas para o cultivo do milho nos cerrados de Roraima. Ministério da Agricultura, Pecuária e Abastecimento, Brasil Circular Técnica No. 5. Rodovia: Embrapa Roraima.

    Google Scholar 

  • Goodman, D. (1975). The theory of diversity-stability relationships in ecology. Quarterly Review of Biology, 50(3), 237–266.

    Google Scholar 

  • Haeussler, G. J. (1952). Losses caused by insects. In A. Stefferud (Ed.), Insects: The Yearbook of Agriculture 1952 (pp. 141–146). Washington, D.C.: U.S. Government Printing Office.

    Google Scholar 

  • Haile, A. (2006). On-farm storage studies on sorghum and chickpea in Eritrea. African Journal of Biotechnology, 5(17), 1537–1544.

    Google Scholar 

  • Hall, R. (1995). Challenges and prospects of integrated pest management. In R. Reuveni (Ed.)., Novel Approaches to Integrated Pest Management (pp. 1–19). Boca Raton Florida, USA: Lewis.

    Google Scholar 

  • Haseeb, M., Sharma, D. K., & Qamar, M. (2009). Estimation of the losses caused by shoot and fruit borer, Leucinodes orbonalis Guen. (Lepidoptera: Pyralidae) in brinjal. Trends in Biosciences, 2(1), 68–69.

    Google Scholar 

  • Herrera Campo, B. V., Hyman, G., & Bellotti, A. (2011). Threats to cassava production: Known and potential geographic distribution of four key biotic constraints. Food Security, 3(3), 329–345.

    Google Scholar 

  • Hodges, R. D., & Scofield, A. M. (1983). Effect of agricultural practices on the health of plants and animals produced: A review. In W. Lockeretz (Ed.)., Environmentally Sound Agriculture (pp. 3–34). New York: Praeger.

    Google Scholar 

  • Hutchison, W. D., & Campbell, C. D. (1994). Economic impact of sugarbeet root aphid (Homoptera: Aphididae) on sugarbeet yield and quality in southern Minnesota. Journal of Economic Entomology, 87(2), 465–475.

    Google Scholar 

  • Imai, T., Kasaishi, Y., Harada, H., Takahashi, R., & Kuramochi, K. (2011). The first report of Acherontia lachesis (F.) (Lepidoptera: Sphingidae) infestation on tobacco in Oyama, Tochigi Prefecture. Japanese Journal of Applied Entomology and Zoology, 55(2), 65–67.

    Google Scholar 

  • Jagadeesh, H. V., & Nanjappa, D. (2009). Crisis encountered by the coconut growers of Hassan district in Karnataka. Mysore Journal of Agricultural Sciences, 43(4), 823–826.

    Google Scholar 

  • Jaques, R. P., Jarvis, W. R., Seaman, W. L., Howard, R. J., Vrain, T. C., Ebsary, B. A., & Garland, J. A. (1994). Crop losses and their causes. In R. J. Howard, J. A. Garland & W. L. Seaman (Eds.)., Diseases and Pests of Vegetable Crops in Canada: An Illustrated Compendium (pp. 11–21). Ottawa, Canada: Canadian Phytopathological Society/Entomological Society of Canada.

    Google Scholar 

  • Jeppson, L. R., Keifer, H. H., & Baker, E. W. (1975). Mites Injurious to Economic Plants. Berkeley: University of California Press.

    Google Scholar 

  • Joshi, M. D., Butani, P. G., Patel, V. N., & Jeyakumar, P. (2010). Cotton mealy bug, Phenacoccus solenopsis Tinsley—a review. Agricultural Reviews, 31(2), 113–119.

    Google Scholar 

  • Kalaiyarasan, S., & Palanisamy, S. (2005). Estimation of yield loss caused by sesame podbug Elasmolomus sordidus Fabricius under field condition. Journal of Plant Protection and Environment, 2(2), 108–109.

    Google Scholar 

  • Katagihallimath, S. S. (1963). Chilli (Capsicum annuum)—A new host plant of Heliothis armigera, Hb. Current Science, 32(10), 464–465.

    Google Scholar 

  • Kate, A. O., Bharodia, R. K., Joshi, M. D., Pardeshi, A. M., & Makadia, R. R. (2009). Estimation on yield losses in cucumber due to fruit fly, Bactrocera cucurbitae (Coquillet). International Journal of Plant Protection, 2(2), 276–277.

    Google Scholar 

  • Krantz, G. W., & Walter, D. E. (Eds.). (2009). A Manual of Acarology (3rd ed.). Lubbock, Texas, USA: Texas Tech University Press.

    Google Scholar 

  • Kuniata, L. S., & Sweet, C. P. M. (1994). Management of Sesamia grisescens Walker (Lep.: Noctuidae), a sugar-cane borer in Papua New Guinea. Crop Protection, 13(7), 488–493.

    Google Scholar 

  • Labandeira, C. (2007). The origin of herbivory on land: Initial patterns of plant tissue consumption by arthropods. Insect Science, 14(4), 259–275.

    Google Scholar 

  • Ladang, Y. D., Ngamo, L. T. S., Ngassoum, M. B., Mapongmestsem, P. M., & Hance, T. (2008). Effect of sorghum cultivars on population growth and grain damages by the rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae). African Journal of Agricultural Research, 3(4), 255–258.

    Google Scholar 

  • Lal, M., Vaidya, D. N., & Mehta, P. K. (2000). Relative abundance and extent of losses in unhusked rice due to stored grain insect pests in Kangra district of Himachal Pradesh. Pest Management and Economic Zoology, 8(2), 129–132.

    Google Scholar 

  • Landis, D. A., Gardiner, M. M., van der Werf, W., & Swinton, S. M. (2008). Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. Proceedings of the National Academy of Sciences U S A, 105(51), 20552–20557.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Letourneau, D. K. (1997). Plant–arthropod interactions in agroecosystems. In L. E. Jackson (Ed.)., Ecology in Agriculture (pp. 239–290). San Diego, California, USA: Academic Press.

    Google Scholar 

  • Litsinger, J. A., dela Cruz, C. G., Canapi, B. L., & Barrion, A. T. (2007). Maize planting time and arthropod abundance in southern Mindanao, Philippines. I. Population dynamics of insect pests. International Journal of Pest Management, 53(2), 147–159.

    Google Scholar 

  • Lopes, C. M. D. A., & Silva, N. M. (1998). Impacto econômico da broca do cupuaçu, Conotrachelus humeropictus Field (Coleoptera: Curculionidae) nos estados do Amazonas e Rondônia. Anais da Sociedade Entomológica do Brasil, 27(3), 481–483.

    Google Scholar 

  • Magdoff, F. (1995). Soil quality and management. Agroecology: The Science of Sustainable Agriculture (2nd ed., pp. 349–364). Boulder, Colorado, USA: Westview.

    Google Scholar 

  • Maity, B. K., Tripathy, M. K., & Panda, S. K. (2001). Estimation of crop loss due to Crocidolomia binotalis Zell in Indian rapeseed and determination of its economic threshold level. Indian Journal of Agricultural Research, 35(1), 52–55.

    Google Scholar 

  • Marlatt, C. L. (1905). The annual loss occasioned by destructive insects in the United States. In G. W. Hill (Ed.)., Yearbook of the United States Department of Agriculture, 1904 (pp. 461–474). Washington, D.C.: Government Printing Office.

    Google Scholar 

  • Martinson, T., Bernard, D., English-Loeb, G., & Taft, T., Jr. (1998). Impact of Taedia scrupeus (Hemiptera: Miridae) feeding on cluster development in Concord grapes. Journal of Economic Entomology, 91(2), 507–511.

    Google Scholar 

  • Matson, P. A., Parton, W. J., Power, A. G., & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509.

    CAS  PubMed  Google Scholar 

  • Mattson, W. J., & Addy, N. D. (1975). Phytophagous insects as regulators of forest primary production. Science, 190, 515–522.

    Google Scholar 

  • Mayer, K. (1959). 4500 Jahre Pflanzenschutz: Zeittafel zur Geschichte des Pflanzenschutzes und der Schädlingsbekämpfung unter besonderer Berücksichtigung der Verhältnisse in Deutschland. Stuttgart, Germany: Verlag Eugen Ulmer.

    Google Scholar 

  • Metcalf, R. L. (1980). Changing role of insecticides in crop protection. Annual Review of Entomology, 25, 219–256.

    CAS  Google Scholar 

  • Metcalf, R. L., & Metcalf, R. A. (1993). Destructive and Useful Insects: Their Habits and Control (5th ed.). New York: McGraw-Hill, Inc.

    Google Scholar 

  • Mirik, M., Ansley, J., Michels, J., Jr., & Elliott, N. (2009). Grain and vegetative biomass reduction by the Russian wheat aphid in winter wheat. Southwestern Entomologist, 34(2), 131–139.

    Google Scholar 

  • Mohan, C., Nair, C. P. R., Nampoothiri, C. K., & Rajan, P. (2010). Leaf-eating caterpillar (Opisina arenosella)-induced yield loss in coconut palm. International Journal of Tropical Insect Science, 30(3), 132–137.

    Google Scholar 

  • Moschos, T. (2006). Yield loss quantification and economic injury level estimation for the carpophagous generations of the European grapevine moth Lobesia botrana Den. et Schiff. (Lepidoptera: Tortricidae). International Journal of Pest Management, 52(2), 141–147.

    Google Scholar 

  • Muhamad, R., & Way, M. J. (1995). Damage and crop loss relationships of Helopeltis theivora, Hemiptera, Miridae and cocoa in Malaysia. Crop Protection, 14(2), 117–121.

    Google Scholar 

  • Murali Baskaran, R. K., Rajavel, D. S., & Suresh, K. (2009). Yield loss by major insect pests in ashwagandha. Insect Environment, 14(4), 149–151.

    Google Scholar 

  • Murphy, S. T. (2005). Ecology and management of rice hispa (Dicladispa armigera) in Bangladesh. Final Technical Report No. 7891 (ZA 0445). U.K. Department for International Development, Crop Protection Programme, [s.l.].

    Google Scholar 

  • Nabirye, J., Nampala, P., Kyamanywa, S., Ogenga-Latigo, M. W., Wilson, H., & Adipala, E. (2003). Determination of damage-yield loss relationships and economic injury levels of flower thrips on cowpea in eastern Uganda. Crop Protection, 22(7), 911–915.

    Google Scholar 

  • Nacro, S., Barro, S. A., Sawadogo, L., Gnamou, A., & Tankoano, H. (2006). The effect of planting date on the African rice gall midge Orseolia oryzivora (Diptera: Cecidomyiidae) damage under irrigated conditions in Boulbi, central Burkina Faso. International Journal of Tropical Insect Science, 26(4), 227–232.

    Google Scholar 

  • Nandagopal, V., Prasad, T. V., Gedia, M. V., Prakash, A., & Rao, J. (2007). Life history, distribution and management of groundnut beetle, Caryedon serratus (Olivier): A review. Journal of Applied Zoological Researches, 18(2), 93–107.

    Google Scholar 

  • Navia, D., de Moraes, G. J., Roderick, G., & Navajas, M. (2005). The invasive coconut mite Aceria guerreronis (Acari: Eriophyidae): Origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences. Bulletin of Entomological Research, 95(6), 505–516.

    CAS  PubMed  Google Scholar 

  • Nicholls, C. I., & Altieri, M. A. (2007). Agroecology: Contributions towards a renewed ecological foundation for pest management. In M. Kogan & P. Jepson (Eds.), Perspectives in Ecological Theory and Integrated Pest Management (pp. 431–468). Cambridge, United Kingdom: Cambridge University Press.

    Google Scholar 

  • Nielsen, B. S. (1990). Yield responses of Vicia faba in relation to infestation levels of Sitona lineatus L. (Col., Curculionidae). Journal of Applied Entomology, 110(4), 398–407.

    Google Scholar 

  • NRC (National Research Council). (1989). Alternative Agriculture. Washington, D.C.: National Academy Press.

    Google Scholar 

  • Nutter, F. W., Jr., Teng, P. S., & Royer, M. H. (1993). Terms and concepts for yield, crop loss, and disease thresholds. Plant Disease, 77(2), 211–215.

    Google Scholar 

  • Odum, E. P. (1969). The strategy of ecosystem development. Science, 164, 262–270.

    CAS  PubMed  Google Scholar 

  • Odum, E. P. (1984). Properties of agroecosystems. In R. Lowrance, B. R. Stinner, & G. J. House (Eds.), Agricultural Ecosystems: Unifying Concepts (pp. 5–11). New York: Wiley.

    Google Scholar 

  • Oerke, E.-C. (2006). Crop losses to pests. Journal of Agricultural Science, 144(1), 31–43.

    Google Scholar 

  • Oerke, E.-C., & Dehne, H.-W. (2004). Safeguarding production—losses in major crops and the role of crop protection. Crop Protection, 23(4), 275–285.

    Google Scholar 

  • Oerke, E.-C., Dehne, H.-W., Schönbeck, F., & Weber, A. (1994). Agricultural Ecosystems: Unifying Concepts. Amsterdam: Elsevier Science B.V.

    Google Scholar 

  • Ojwang, P. P. O., Melis, R., Songa, J. M., & Githiri, M. (2010). Genotypic response of common bean to natural field populations of bean fly (Ophiomyia phaseoli) under diverse environmental conditions. Field Crops Research, 117(1), 139–145.

    Google Scholar 

  • Olfert, O., & Slinkard, A. (1999). Grasshopper (Orthoptera: Acrididae) damage to flowers and pods of lentil (Lens culinaris L.). Crop Protection, 18(8), 527–530.

    Google Scholar 

  • Ordish, G. (1952). Untaken Harvest: Man’s Loss of Crops from Pest, Weed and Disease: An Introductory Study. London: Constable and Company Ltd.

    Google Scholar 

  • Ordish, G. (1976). The Constant Pest: A Short History of Pests and Their Control. New York: Charles Scribner’s Sons.

    Google Scholar 

  • Pedigo, L. P., & Rice, M. E. (2006). Entomology and Pest Management (5th ed.). Upper Saddle River, New Jersey, USA: Pearson Prentice Hall.

    Google Scholar 

  • Pimentel, D. (1986). Acroecology [sic] and economics. In M. Kogan (Ed.)., Ecological Theory and Integrated Pest Management Practice (pp. 299–319). New York: Wiley.

    Google Scholar 

  • Pimentel, D. (1993). Environmental and economic benefits of sustainable agriculture. In M. G. Paoletti, T. Napier, O. Ferro, B. R. Stinner & D. Stinner (Eds.)., Socio-economic and Policy Issues for Sustainable Farming Systems (pp. 5–20). Padova, Italy: Cooperativa Amicizia S.r.l.

    Google Scholar 

  • Pimentel, D. (1997). Pest management in agriculture. In D. Pimentel (Ed.)., Techniques for Reducing Pesticide Use: Economic and Environmental Benefits (pp. 1–11). Chichester, United Kingdom: Wiley.

    Google Scholar 

  • Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environment, Development and Sustainability, 7(2), 229–252.

    Google Scholar 

  • Pimentel, D., & Pimentel, M. (1978). Dimensions of the world food problem and losses to pests. In D. Pimentel (Ed.)., World Food, Pest losses, and the Environment. AAAS Selected Symposium (Vol. 13) (pp. 1–16). Boulder, Colorado, USA: Westview.

    Google Scholar 

  • Pimentel, D., Krummel, J., Gallahan, D., Hough, J., Merrill, A., Schreiner, I., Vittum, P., Koziol, F., Back, E., Yen, D., & Fiance, S. (1978). Benefits and costs of pesticide use in U.S. food production. Bioscience, 28(12), 772, 778–784.

    Google Scholar 

  • Pimentel, D., Acquay, H., Biltonen, M., Rice, P., Silva, M., Nelson, J., Lipner, V., Giordano, S., Horowitz, A., & D’Amore, M. (1993). Assessment of environmental and economic impacts of pesticide use. In D. Pimentel & H. Lehman (Eds.)., The Pesticide Question: Environment, Economics, and Ethics (pp. 47–84). New York: Chapman & Hall.

    Google Scholar 

  • Pimentel, D., Hepperly, P., Hanson, J., Douds, D., & Seidel, R. (2005). Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience, 55(7), 573–582.

    Google Scholar 

  • Prasad, R., & Singh, J. (2009). Yield loss estimation in okra and brinjal caused by phytophagous mites during summer. Journal of Plant Protection and Environment, 6(1), 125–130.

    Google Scholar 

  • Qadri, S. M. H., Sakthivel, N., & Punithavathy, G. (2010). Estimation of mulberry crop loss due to spiralling whitefly, Aleurodicus dispersus Russell (Homoptera: Aleyrodidae) and its impact on silkworm productivity. Indian Journal of Sericulture, 49(2), 106–109.

    Google Scholar 

  • Rajalakshmi, E., Sankaranarayanan, P., & Pandya, R. K. (2009). The yellow mite, Polyphagotarsonemus latus (Banks)—a serious pest of mulberry under Nilgiris hill conditions. Indian Journal of Sericulture, 48(2), 187–190.

    Google Scholar 

  • Ramos, P., Campos, M., & Ramos, J. M. (1998). Long-term study on the evaluation of yield and economic losses caused by Prays oleae Bern. in the olive crop of Granada (southern Spain). Crop Protection, 17(8), 645–647.

    Google Scholar 

  • Rana, J. S. (2005). Performance of Lipaphis erysimi (Homoptera: Aphididae) on different Brassica species in a tropical environment. Journal of Pest Science, 78(3), 155–160.

    Google Scholar 

  • Ray, R. C., Chowdhury, S. R., & Balagopalan, C. (1994). Minimizing weight loss and microbial rotting of sweet potatoes (Ipomoea batatas L.) in storage under tropical ambient conditions. Advances in Horticultural Science, 8(3), 159–163.

    Google Scholar 

  • Razaq, M., Mehmood, A., Aslam, M., Ismail, M., Afzal, M., & Ali Shad, S. (2011). Losses in yield and yield components caused by aphids to late sown Brassica napus L., Brassica juncea L. and Brassica carrinata A. Braun at Multan, Punjab (Pakistan). Pakistan Journal of Botany, 43(1), 319–324.

    Google Scholar 

  • Reddy, K. V. S., & Zehr, U. B. (2004). Novel strategies for overcoming pests and diseases in India (symposia papers 3.7). In T. Fischer, N. Turner, & J. Angus, et al. (Eds.)., New Directions for a Diverse Planet: Proceedings of the 4th International Crop Science Congress (pp. 1–8). Gosford, NSW, Australia: The Regional Institute Ltd.

    Google Scholar 

  • Reed, W. (1983). Crop losses caused by insect pests in the developing world. In Plant Protection for Human Welfare: 10th International Congress of Plant Protection 1983 (pp. 74–80). Croydon, England: British Crop Protection Council.

    Google Scholar 

  • Reid, J. C., & Mansingh, A. (1985). Economic losses due to Hypothenemus hampei Ferr. during processing of coffee berries in Jamaica. Tropical Pest Management, 31(1), 55–59.

    Google Scholar 

  • Rondon, S. I. (2010). The potato tuberworm: A literature review of its biology, ecology, and control. American Journal of Potato Research, 87(2), 149–166.

    Google Scholar 

  • Root, R. B. (1973). Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecological Monographs, 43(1), 95–124.

    Google Scholar 

  • Schowalter, T. D. (2007). Ecosystems: Concepts, analyses and practical implications in IPM. In M. Kogan & P. Jepson (Eds.)., Perspectives in Ecological Theory and Integrated Pest Management (pp. 411–430). Cambridge, United Kingdom: Cambridge University Press.

    Google Scholar 

  • Schulten, G. G. M. (1975). Losses in stored maize in Malawi (C. Africa) and work undertaken to prevent them. EPPO Bulletin, 5(2), 113–120.

    Google Scholar 

  • Shahjahan, M. (1974). Extent of damage of unhusked stored rice by Sitotroga cerealella Oliv. (Lepidoptera, Gelechiidae) in Bangladesh. Journal of Stored Products Research, 10(1), 23–26.

    Google Scholar 

  • Sharma, A., & Naqvi, A. R. (1993). Assessment of losses in ber from the attack of Larvacarus transitans (Ewing). Indian Journal of Entomology, 55(2), 220–222.

    Google Scholar 

  • Shukla, A. (2010). Insect pests of banana with special reference to weevil borers. International Journal of Plant Protection, 3(2), 387–393.

    Google Scholar 

  • Singh, H., & Malik, V. S. (1993). Biology of painted bug (Bagrada cruciferarum). Indian Journal of Agricultural Sciences, 63(10), 672–674.

    Google Scholar 

  • Singh, P., & Sharma, R. K. (2009). Effect of insecticides for the control of maize stem borer Chilo partellus (Swinhoe). Mysore Journal of Agricultural Sciences, 43(3), 577–578.

    Google Scholar 

  • Singh, P., & Jakhmola, S. S. (2011). Evaluation of plant extracts on the losses caused by Callosobruchus maculatus (Fab.) in green gram. Journal of Applied Bioscience, 37(1), 31–34.

    Google Scholar 

  • Soholt, L. F. (1973). Consumption of primary production by a population of kangaroo rats (Dipodomys merriami) in the Mojave Desert. Ecological Monographs, 43(3), 357–376.

    Google Scholar 

  • Strickland, A. H. (1965). Pest control and productivity in British agriculture. Journal of the Royal Society of Arts, 113, 62–81.

    CAS  Google Scholar 

  • Strickland, A. H. (1971). The actual status of crop loss assessment. EPPO Bulletin, 1(1), 39–51.

    Google Scholar 

  • Stumpf, E. (1998). Post-harvest loss due to pests in dried cassava chips and comparative methods for its assessment: A case study on small-scale farm households in Ghana. Dissertation. Berlin: Humboldt-Universität.

    Google Scholar 

  • Teng, P. S. (Ed.). (1987). Crop Loss Assessment and Pest Management. St. Paul, Minnesota, USA: APS.

    Google Scholar 

  • Thacker, J. R. M. (2002). An Introduction to Arthropod Pest Control. Cambridge, United Kingdom: Cambridge University Press.

    Google Scholar 

  • Triplehorn, C. A., & Johnson, N. F. (2005). Borror and DeLong’s Introduction to the Study of Insects (7th ed.). Belmont, California, USA: Thomson Brooks.

    Google Scholar 

  • Ullstrup, A. J. (1972). The impacts of the southern corn leaf blight epidemics of 1970–1971. Annual Review of Phytopathology, 10, 37–50.

    Google Scholar 

  • UN. (2011a). World population to reach 10 billion by 2100 if fertility in all countries converges to replacement level. Press Release, May 3, 2011. United Nations Department of Economic and Social Affairs, Population Division, New York.

    Google Scholar 

  • UN. (2011b). The State of World Population 2011. New York: United Nations Population Fund.

    Google Scholar 

  • USDA (United States Department of Agriculture). (1965). Losses in Agriculture. USDA Agriculture Handbook No. 291. Washington, D.C.: U.S. Government Printing Office.

    Google Scholar 

  • Van Alebeek, F. A. N. (1996). Natural suppression of bruchid pests in stored cowpea (Vigna unguiculata (L.) Walp.) in West Africa. International Journal of Pest Management, 42(1), 55–60.

    Google Scholar 

  • Van den Berg, H., Shepard, B. M., & Nasikin (1998). Damage incidence by Etiella zinckenella in soybean in East Java, Indonesia. International Journal of Pest Management, 44(3), 153–159.

    Google Scholar 

  • Van der Graaff, N. A. (1981). Increasing reliability of crop loss information: The use of “indirect” data. In L. Chiarappa (Ed.)., Crop Loss Assessment Methods—Supplement 3 (pp. 65–69). Farnham Royal, Slough, United Kingdom: Commonwealth Agricultural Bureaux.

    Google Scholar 

  • Vandermeer, J. (1995). The ecological basis of alternative agriculture. Annual Review of Ecology and Systematics, 26, 201–224.

    Google Scholar 

  • Vayssieres, J. F., Korie, S., Coulibaly, O., Temple, L., & Boueyi, S. P. (2008). The mango tree in central and northern Benin: Cultivar inventory, yield assessment, infested stages and loss due to fruit flies (Diptera Tephritidae). Fruits, 63(6), 335–348.

    Google Scholar 

  • Vitousek, P. M., & Reiners, W. A. (1975). Ecosystem succession and nutrient retention: A hypothesis. Bioscience, 25(6), 376–381.

    CAS  Google Scholar 

  • Walker, P. T. (1981). The measurement of insect populations, their distribution and damage. In L. Chiarappa (Ed.)., Crop Loss Assessment Methods—Supplement 3 (pp. 43–49). Farnham Royal, Slough, United Kingdom: Commonwealth Agricultural Bureaux.

    Google Scholar 

  • Walker, P. T. (1983). Crop losses: The need to quantify the effects of pests, diseases and weeds on agricultural production. Agriculture, Ecosystems and Environment, 9(2), 119–158.

    Google Scholar 

  • Walker, P. T. (1987a). Quantifying the relationship between insect populations, damage, yield and economic thresholds. In P. S. Teng (Ed.), Crop Loss Assessment and Pest Management (pp. 114–125). St. Paul, Minnesota, USA: APS.

    Google Scholar 

  • Walker, P. T. (1987b). Losses in yield due to pests in tropical crops and their value in policy decision-making. Insect Science and Its Application, 8(4–6), 665–671.

    Google Scholar 

  • Walsh, D. B., Zalom, F. G., & Shaw, D. V. (1998). Interaction of the twospotted spider mite (Acari: Tetranychidae) with yield of day-neutral strawberries in California. Journal of Economic Entomology, 91(3), 678–685.

    Google Scholar 

  • Wesis, P., Niangu, B., Ero, M., Masamdu, R., Autai, M., Elmouttie, D., & Clarke, A. R. (2010). Host use and crop impacts of Oribius Marshall species (Coleoptera: Curculionidae) in Eastern Highlands Province, Papua New Guinea. Bulletin of Entomological Research, 100(2), 133–143.

    CAS  PubMed  Google Scholar 

  • Wratten, S. D., & van Emden, H. F. (1995). Habitat management for enhanced activity of natural enemies of insect pests. In D. M. Glen, M. P. Greaves, & H. M. Anderson (Eds.), Ecology and Integrated Farming Systems (pp. 117–145). Proceedings of the 13th Long Ashton International Symposium. Chichester, United Kingdom: Wiley.

    Google Scholar 

  • Youm, O., & Owusu, E. O. (1998). Assessment of yield loss due to the millet head miner, Heliocheilus albipunctella (Lepidoptera: Noctuidae) using a damage rating scale and regression analysis in Niger. International Journal of Pest Management, 44(2), 119–121.

    Google Scholar 

  • Yudelman, M., Ratta, A., & Nygaard, D. (1998). Pest management and food production: Looking to the future. Food, Agriculture, and the Environment Discussion Paper No. 25. International Food Policy Research Institute, Washington, D.C.

    Google Scholar 

  • Zadoks, J. C. (1981). Crop loss today, profit tomorrow: An approach to quantifying production constraints and to measuring progress. In L. Chiarappa (Ed.)., Crop Loss Assessment Methods—Supplement 3 (pp. 5–11). Farnham Royal, Slough, United Kingdom: Commonwealth Agricultural Bureaux.

    Google Scholar 

  • Zemek, R., Kurowská, M., Kameníková, L., Rovenská, G. Z., Havel, J., & Reindl, F. (2005). Studies on phenology and harmfulness of Aceria carvi Nal. (Acari: Eriophyidae) on caraway, Carum carvi L., in the Czech Republic. Journal of Pest Science, 78(2), 115–116.

    Google Scholar 

  • Zou, L., Stout, M. J., & Dunand, R. T. (2004). The effects of feeding by the rice water weevil, Lissorhoptrus oryzophilus Kuschel, on the growth and yield components of rice, Oryza sativa. Agricultural and Forest Entomology, 6(1), 47–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Culliney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Culliney, T. (2014). Crop Losses to Arthropods. In: Pimentel, D., Peshin, R. (eds) Integrated Pest Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7796-5_8

Download citation

Publish with us

Policies and ethics