Skip to main content
Log in

The effects of farming system, habitat type and bait type on the isolation of entomopathogenic fungi from citrus soils in the Eastern Cape Province, South Africa

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

A survey of occurrence of entomopathogenic fungi was undertaken on soils from citrus orchards and refugia on conventionally and organically managed farms in the Eastern Cape Province in South Africa. An adapted method for baiting soil samples with key citrus pest Thaumatotibia leucotreta (Meyrick; Lepidoptera: Tortricidae) and Ceratitis capitata (Wiedemann; Diptera: Tephritidae) larvae, as well as with the standard bait insect, Galleria mellonella (Linnaeus; Lepidoptera: Pyralidae), was implemented. Sixty-two potentially useful entomopathogenic fungal isolates belonging to four genera were collected from 288 soil samples, an occurrence frequency of 21.53%. The most frequently isolated entomopathogenic fungal species was Beauveria bassiana (Balsamo) Vuillemin (15.63%), followed by Metarhizium anisopliae var. anisopliae (Metschnikoff) Sorokin (3.82%). Galleria mellonella was the most effective bait insect used to isolate fungal species (χ 2 = 40.13, df = 2, P ≤ 0.005), with a total of 45 isolates obtained, followed by C. capitata with 11 isolates, and T. leucotreta with six isolates recovered. There was a significantly (χ 2 = 11.65, df = 1, P ≤ 0.005) higher occurrence of entomopathogenic fungi in soil samples taken from refugia compared to cultivated orchards of both organically and conventionally managed farms. No significant differences were observed in the recovery of fungal isolates when soil samples from both farming systems were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali-Shtayeh M, Mara’i AB, Jamous RM (2002) Distribution, occurrence and characterization of entomopathogenic fungi in agricultural soil in the Palestinian area. Mycopathologia 156:235–244

    Article  PubMed  Google Scholar 

  • Alves SB, Tamai MA, Rossi LS, Castiglioni E (2005) Beauveria bassiana pathogenicity to the citrus rust mite Phyllocoptruta oleivora. Exp Appl Acarol 37:117–122

    Article  PubMed  Google Scholar 

  • Barnett HL (1960) Illustrated genera of imperfect fungi. Burgess Publishing Company, Minneapolis, pp 54–75, 154

  • Begemann G (2008) The mortality of Thaumatotibia leucotreta (Meyrick) final instar larvae exposed to the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin. Afr Entomol 16(2):306–308

    Article  Google Scholar 

  • Bidochka MJ, Kasperski JE, Wild GAM (1998) Occurrence of the entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana in soils from temperate and near-northern habitats. Can J Bot 76:1198–1204

    Article  Google Scholar 

  • Bidochka MJ, Kamp AM, Lavender TM, DeKoning J, De Croos JNA (2001) Habitat associations in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: uncovering cryptic species? Appl Environ Microbiol 67:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Bidochka MJ, Menzies FV, Kamp AM (2002) Genetic groups of the insect-pathogenic fungus Beauveria bassiana are associated with habitat and thermal growth preferences. Arch Microbiol 178:531–537

    Article  CAS  PubMed  Google Scholar 

  • Bing-Da S, Xing-Zhong L (2008) Occurrence and diversity of insect-associated fungi in natural soils in China. Appl Soil Ecol 39:100–108

    Article  Google Scholar 

  • Braga G, Flint S, Miller C, Anderson A, Roberts D (2001) Variability in response to UV-B among species and strains of Metarhizium isolated from sites at latitudes from 61°N to 54°S. J Invertebr Pathol 78:98–108

    Article  CAS  PubMed  Google Scholar 

  • Bruck DJ (2004) Natural occurrence of entomopathogens in Pacific Northwest nursery soils and their virulence to the black vine weevil, Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae). Environ Entomol 33:1335–1343

    Article  Google Scholar 

  • Butt TM, Jackson CW, Magan N (eds) (2001) Introduction- fungi as biocontrol agents: progress, problems and potential. CABI International, Wallingford, pp 1–8

  • Castillo M, Moya P, Hernandez E, Primo-Yufera E (2000) Susceptibility of Ceratitis capitata Wiedemann (Diptera: Tephritidae) to entomopathogenic fungi and their extracts. Biol Control 19:274–282

    Article  Google Scholar 

  • Castrillo L, Roberts D, Vandenberg J (2005) The fungal past, present and future: germination, ramification, and reproduction. J Invert Pathol 89:46–56

    Article  Google Scholar 

  • Chandler D, Hay D, Reid AP (1997) Sampling and occurrence of entomopathogenic fungi and nematodes in UK soils. Appl Soil Ecol 5:133–141

    Article  Google Scholar 

  • Cross J, Solomon M, Chandler D, Jarrett P, Richardson P, Winstanley D, Bathon H, Huber J, Keller B, Langenbruch G, Zimmermann G (1999) Biocontrol of pests of apples and pears in northern and central Europe: microbial agents and nematodes. Biocontrol Sci Techn 9(2):125–149

    Article  Google Scholar 

  • Dimbi S, Maniania N, Lux S, Ekesi S, Mueke J (2003) Pathogenicity of Metarhizium anisopliae Sorokin and Beauveria bassiana Vuillemin, to three adult fruit fly species: Ceratitis capitata, C. rosa var. fasciventris and C. cosyra (Diptera: Tephritidae). Mycopathologia 156:375–382

    Article  PubMed  Google Scholar 

  • Dimbi S, Maniania N, Lux S, Mueke J (2004) Effects of constant temperatures on germination, radial growth and virulence of Metarhizium anisopliae to three species of African tephritid fruit flies. BioControl 49:83–94

    Article  Google Scholar 

  • Dolinski C, Lacey L (2007) Microbial control of arthropod pests of tropical trees. Neotrop Entomol 36(2):161–179

    Article  PubMed  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (2007) Compendium of Soil Fungi. IHW-Verlag, Germany, pp 106–109, 266–268, 504–511

  • Ekesi S, Maniania N, Lux S (2002) Mortality in three tephritid fruit fly puparia and adults caused by the entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana. Biocontrol Sci Techn 12:7–17

    Article  Google Scholar 

  • Ekesi S, Maniania N, Lux S (2003) Effect of soil temperature and moisture on survival and infectivity of Metarhizium anisopliae to four tephritid fruit fly puparia. J Invertebr Pathol 83:157–167

    Article  CAS  PubMed  Google Scholar 

  • Filho AB, Almeida JEM, Lamas C (2001) Effect of thiamethoxam on entomopathogenic micro-organisms. Neotrop Entomol 30(3):437–447

    Google Scholar 

  • Food and Agriculture Organisation of the United Nations (FAO) (2006) Trades & Markets. Citrus Fruit Annual Statistics 2006. Available on: http://www.fao.org/es/ESC/en/15/238/highlight_243.html

  • Gan Z, Yang J, Tao N, Liang L, Mi Q, Li J, Zhang KQ (2007) Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita. Appl Microbiol Biotechnol 76:1309–1317

    Article  CAS  PubMed  Google Scholar 

  • Goettel MS, Koike M, Kim JJ, Aiuchi D, Shinya R, Brodeur J (2008) Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J Invertebr Pathol 98:256–261

    Article  CAS  PubMed  Google Scholar 

  • Hatting J, Hazir S, Macucwa G, Jooste H, Jankielsohn A (2004) Isolation of entomopathogens from South African soils using the Galleria mellonella-bait technique. In: Proceedings of the 37th Annual Meeting of the Society for Invertebrate Pathology, Helsinki, 1–6 August 2004, p 95. ISBN: 952-91-7520-5

  • Jaronski S (2008) Soil ecology of the entomopathogenic ascomycetes: a critical examination of what we (think) we know. In: Ekesi S, Maniania NK (eds) Use of entomopathogenic fungi in biological pest management: research signpost, pp 91–144

  • Keller S, Kessler P, Schweizer C (2003) Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metarhizium anisopliae. BioControl 48:307–319

    Article  Google Scholar 

  • Khalil SK, Shah MA, Naeem M (1985) Laboratory studies on the compatibility of the entomopathogenic fungus Verticillium lecanii with certain pesticides. Agr Ecosyst Environ 13:329–334

    Article  CAS  Google Scholar 

  • Kirkman W, Moore SD (2007) A study of alternative hosts for the false codling moth, Thaumatotibia (= Cryptophlebia) leucotreta in the Eastern Cape. S Afr Fruit J 6(2):33–38

    Google Scholar 

  • Klingen I, Eilenberg J, Meadow R (2002) Effects of farming system, field margins and bait insect on the occurrence of insect pathogenic fungi in soils. Agr Ecosyst Environ 91:191–198

    Article  Google Scholar 

  • Konstantopoulou MA, Mazomenos BE (2005) Evaluation of Beauveria bassiana and B. brongniartii strains and four wild-type fungal species against adults of Bactrocera oleae and Ceratitis capitata. BioControl 50:293–305

    Article  Google Scholar 

  • Lacey LA, Shapiro-Ilan D (2003) The potential role for microbial control of orchard insect pests in sustainable agriculture. Food Agr Environ 1(2):326–331

    Google Scholar 

  • Lacey LA, Shapiro-Ilan D (2008) Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu Rev Entomol 53:121–144

    Article  CAS  PubMed  Google Scholar 

  • Lacey LA, Thomson D, Vincent C, Arthurs SP (2008) Codling moth granulovirus: a comprehensive review. Biocontrol Sci Technol 18(7):639–663

    Article  Google Scholar 

  • Lagnaoui A, Radcliffe EB (1998) Potato fungicides interfere with entomopathogenic fungi impacting population dynamics of Green Peach Aphid. Amer J of Potato Res 75:19–25

    Article  CAS  Google Scholar 

  • Majchrowicz I, Poprawski TJ (1993) Effects in vitro of nine fungicides on growth of entomopathogenic fungi. Biocontrol Sci Technol 3:321–336

    Article  Google Scholar 

  • Mather C, Greenberg S (2003) Market liberalisation in post-apartheid South Africa: the restructuring of citrus exports after ‘deregulation’. J S Afr Stud 29(2):394–411

    Google Scholar 

  • McCoy CW, Stuart RJ, Duncan LW, Shapiro-Ilan D (2007) Application and evaluation of entomopathogens for citrus pest control. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, The Netherlands, pp 567–581

    Chapter  Google Scholar 

  • Meyling N (2007) Methods for isolating entomopathogenic fungi from the soil environment. Department of Ecology, Faculty of Life Sciences, University of Copenhagen, Denmark

    Google Scholar 

  • Meyling N, Eilenberg J (2006) Occurrence and distribution of soil borne entomopathogenic fungi within a single organic agroecosystem. Agr Ecosyst Environ 113:336–341

    Article  Google Scholar 

  • Meyling N, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43:145–155

    Article  Google Scholar 

  • Meyling N, Lubeck M, Buckley E, Eilenberg J, Rehners S (2009) Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and seminatural habitats. Mol Ecol 18:1282–1293

    Article  CAS  PubMed  Google Scholar 

  • Mietkiewski RT, Pell JK, Clark SJ (1997) Influence of pesticide use on the natural occurrence of entomopathogenic fungi in arable soils in the UK: field and laboratory comparisons. Biocontrol Sci Technol 7:565–576

    Article  Google Scholar 

  • Mochi DA, Monteiro AC, De Bortoli SA, Doria H, Barbosa JC (2006) Pathogenicity of Metarhizium anisopliae for Ceratitis capitata (Wied.) (Diptera: Tephritidae) in soil with different pesticides. Neotrop Entomol 35(3):382–389

    Article  CAS  PubMed  Google Scholar 

  • Moore SD (2002) The development and evaluation of Cryptophlebia leucotreta granulovirus (CrleGV) as a biological control agent for the management of false codling moth, Cryptophlebia leucotreta, on citrus. Rhodes University PhD Thesis number TR 03-137

  • Pirali-Kheirabadi K, Haddadzadeh H, Razzaghi-Abyaneh M, Bokaie S, Zare R, Ghazavi M, Shams-Ghahfarokhi M (2006) Biological control of Rhipicephalus (Boophilus) annulatus by different strains of Metarhizium anisopliae, Beauveria bassiana and Lecanicillium psalliotae fungi. Parasitol Res 100(6):1297–1302

    Article  PubMed  Google Scholar 

  • Puterka GJ (1999) Fungal pathogens for arthropod pest control in orchard systems: mycoinsecticidal approach for pear psylla control. BioControl 44:183–210

    Article  Google Scholar 

  • Quesada-Moraga E, Navas-Cortes J, Maranhao E, Ortiz-Urquiza A, Santiago-Alvarez C (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol Res 111:947–966

    Article  PubMed  Google Scholar 

  • Saenz-de-Cabez FJ, Marco-Manceb V, Perez-Moreno I (2003) The entomopathogenic fungus Beauveria bassiana and its compatibility with triflumuron: effects on the two-spotted spider mite, Tetranychus urticae. Biol Control 26:168–173

    Article  Google Scholar 

  • Smith TL (1937) Genetical studies on the wax moth Galleria mellonella Linn’. Genetics 23:115–137

    Google Scholar 

  • Smith D, Peña JE (2002) Tropical Citrus Pests. In: Peña JE, Sharp JL, Wysoki M (eds) Tropical fruit pests and pollinators. Biology, economic importance, natural enemies and control. CABI publishing, Wallingford, pp 57–101

    Chapter  Google Scholar 

  • Soil Classification Working Group (1991) Soil classification—a taxonomic system for South Africa. Department of Agricultural Development, Pretoria

    Google Scholar 

  • Sookar P, Bhagwant S, Awuor Ouna E (2008) Isolation of entomopathogenic fungi from the soil and their pathogenicity to two fruit fly species (Diptera: Tephritidae). J Appl Entomol 132:778–788

    Article  Google Scholar 

  • Stibick J (2008) New pest response guidelines: false codling moth Thaumatotibia leucotreta. USDA–APHIS–PPQ–Emergency and Domestic Programs, Riverdale, Maryland. http://www.aphis.usda.gov/import_export/plants/manuals/emergency/downloads/nprg-fcm.pdf

  • Thomas MC, Heppner JB, Woodruff RE, Weems HV, Steck GJ, Fasulo TR (2001) Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae). EENY-214 (IN371). DPI Entomology Circulars 4: 230 and 273. University of Florida

  • Vänninen I, Tyni-Juslin J, Hokkanen H (2000) Persistence of augmented Metarhizium anisopliae and Beauveria bassiana in Finnish agricultural soils. Bio Control 45:201–222

    Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Ownley BH, Pell JK, Rangel D, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Article  Google Scholar 

  • Vilcinskas A, Matha V, Gotz P (1997) Effects of the entomopathogenic fungus Metarhizium anisopliae and its secondary metabolites on the morphology and cytoskeleton of plasmatocytes isolated from the greater wax moth, Galleria mellonella. J Invertebr Pathol 43(12):1149–1159

    CAS  Google Scholar 

  • Ware T, Richards G, Daneel J (2003) The M3 Bait Station: a novel method for fruit fly control. S Afr Fruit J 1:44–47

    Google Scholar 

  • Zare R, Gams W (2008) A revision of the Verticillium fungicola species complex and its affinity with the genus Lecanicillium. Mycol Res 112:811–824

    Article  CAS  PubMed  Google Scholar 

  • Zehnder G, Gurr G, Kuhne S, Wade M, Wratten S, Wyss E (2007) Arthropod pest management in organic crops. Annu Rev Entomol 52:57–80

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann G (1986) The Galleria bait method for detection of entomopathogenic fungi in soil. J Appl Entomol 102:213–215

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Citrus Research International (CRI), Rhodes University and The Citrus Academy for providing financial and technical support. Thanks go to Dr. Tim Grout for reviewing the manuscript. Further thanks go to Ms M. Truter of the Mycology Unit at the Plant Protection and Research Institute (PPRI) in Pretoria, Ms. A. Manrakhan, Mr. C. Chambers, Mr. S. Apane, Mrs. K. Benyon, and Dr. J. Coetzee for technical, financial and statistical help and to Prof R. Hepburn and Mrs. A. Malan for helping with the acquisition of Galleria larvae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Goble.

Additional information

Handling Editor: Helen Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goble, T.A., Dames, J.F., P Hill, M. et al. The effects of farming system, habitat type and bait type on the isolation of entomopathogenic fungi from citrus soils in the Eastern Cape Province, South Africa. BioControl 55, 399–412 (2010). https://doi.org/10.1007/s10526-009-9259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-009-9259-0

Keywords

Navigation