Skip to main content

Advertisement

Log in

Insecticide resistance and its molecular basis in urban insect pests

  • Review
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Insecticide resistance is one of the most important evolutionary phenomena for researchers. Overuse of chemicals has induced resistance in insect pests that ultimately has led to the collapse of disease control programs in many countries. The erroneous and inappropriate management of insect vectors has resulted in dissemination of many vector-borne diseases like dengue, malaria, diarrhea, leishmaniasis, and many others. In most cases, the emergence of new diseases and the revival of old ones can be related with ecological changes that have favored rapid growth of vector densities. Understanding molecular mechanisms in resistant strains can assist in the development of management programs to control the development and spread of resistant insect populations. The dominant, recessive, and co-dominant forms of genes encoding resistance can be investigated, and furthermore, resistance development can be addressed either by the release of susceptible strains or timely insecticide rotation. The present review discusses the resistance level in all important insect vectors of human diseases; the molecular basis of evolvement of resistance has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acevedo GR, Zapater M, Toloza AC (2009) Insecticide resistance of house fly, Musca domestica (L.) from Argentina. Parasitol Res 105:489–493

    Article  PubMed  Google Scholar 

  • Adler PH, McCreadie JW (1997) Insect life: the hidden ecology of black flies: sibling species and ecological scale. Am Entomol 43:153–162

    Article  Google Scholar 

  • Adler PH, Cheke RA, Post RJ (2010) Evolution, epidemiology, and population genetics of black flies (Diptera: Simuliidae). Infect Genet Evol 10:846–865

    Article  PubMed  Google Scholar 

  • Akiner MM, Caglar SS (2006) The status and seasonal changes of organophosphate and pyrethroid resistance in Turkish populations of the house fly, Musca domestica L. (Diptera: Muscidae). J Vector Ecol 31:58–64

    Article  CAS  PubMed  Google Scholar 

  • Amalraj DD, Sivagnaname N, Srinivasan R (1999) Susceptibility of Phlebotomus argentipes and P. papatasi (Diptera: Psychodidae) to insecticides. J Commun Dis 31:177–180

    CAS  PubMed  Google Scholar 

  • Arnold JTA, Whitten MJ (1976) The genetic basis for organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera, Calliphoridae). Bull Entomol Res 66:561–568

    Article  Google Scholar 

  • Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805

    Article  PubMed  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al (2013) The global distribution and burden of dengue. Nature 496:504–07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitam I, Dittmar K, Parola P, Whiting MF, Raoult D (2010) Fleas and flea-borne diseases. Int J Infect Dis 14:667–676

    Article  Google Scholar 

  • Bossard RL (1997) Evaluation and use of bioassays for surveying insecticide susceptibility of cat fleas, Ctenocephalides fells felis (Bouch6). In: relation to resistance, Ph.D. dissertation. Kansas State University, Manhattan

    Google Scholar 

  • Brengues C, Hawkes NJ, Chandre F, McCarroll L, Duchon S, Guillet P et al (2003) Pyrethroid and DDT cross‐resistance in Aedes aegypti is correlated with novel mutations in the voltage‐gated sodium channel gene. Med Vet Entomol 17:87–94

    Article  CAS  PubMed  Google Scholar 

  • Brown AWA (1986) Insecticide resistance in mosquitoes: a pragmatic review. J Am Mosq Control Assoc 2:123–40

    CAS  PubMed  Google Scholar 

  • Chadwick PR, Invest JF, Bowron MJ (1977) An example of cross-resistance to pyrethroids in DDT resistant Aedes aegypti. Pestic Sci 8:618–624

    Article  Google Scholar 

  • Chai RY, Lee CY (2010) Insecticide resistance profiles and synergism in field populations of the German cockroach (Dictyoptera: Blattellidae) from Singapore. J Econ Entomol 103:460–471

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Newcomb R, Forbes E, McKenzie J, Batterham P (2001) The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina. Insect Biochem Mol Biol 31:805–816

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhong D, Zhang D, Shi L, Zhou G, Gong M et al (2010) Molecular ecology of pyrethroid knockdown resistance in Culex pipiens pallens mosquitoes. PLoS One 5(7):e11681

    Article  PubMed  PubMed Central  Google Scholar 

  • Chevillon C, Raymond M, Guillemaud T, Lenormand T, Pasteur N (1999) Population genetics of insecticide resistance in the mosquito Culex pipiens. Biol J Linnean Soc 68:147–157

    Article  Google Scholar 

  • Chiu TL, Wen Z, Rupasinghe SG, Schuler M (2008) Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc Natl Acad Sci 105:8855–8860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark AG, Shamaan NA (1984) Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S-transferase. Pest Biochem Physiol 22:249–261

    Article  CAS  Google Scholar 

  • Claudianos C, Russell RJ, Oakeshott JG (1999) The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem Mol Biol 29:675–686

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Raymond M, Qiao C-L (2006) Insecticide resistance in vector mosquitoes in China. Pest Manag Sci 62:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Depaquit J, Grandadam M, Fouque F, Andry PE, Peyrefitte C (2010) Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: a review. Euro Surveill 15:19507

    CAS  PubMed  Google Scholar 

  • Desjeux P (1996) Leishmaniasis: public health aspects and control. Clin Derm 14:417–423

    Article  CAS  Google Scholar 

  • Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–318

    Article  CAS  PubMed  Google Scholar 

  • Diabate A, Baldet T, Chandre F, Akoobeto M, Guiguemde TR, Darriet F et al (2002) The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae sl in Burkina Faso. Am J Trop Med Hyg 67:617–622

    CAS  PubMed  Google Scholar 

  • Djogbénou L, Weill M, Hougard JM, Raymond M, Akogbeto M, Chandre F (2007) Characterization of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae (Diptera: Culicidae): resistance levels and dominance. J Med Entomol 44:805–810

    PubMed  Google Scholar 

  • El-Gazzar LM, Milio J, Koehler PG, Patterson RS (1986) Insecticide resistance in the cat flea (Siphonaptera: Pulicidae). J Econ Entomol 79:132–134

    Article  CAS  PubMed  Google Scholar 

  • Enayati AA, Vatandoost H, Ladonni H, Townson H, Hemingway J (2003) Molecular evidence for a kdr‐like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi. Med Vet Entomol 17:138–144

    Article  CAS  PubMed  Google Scholar 

  • Erzinclioglu YZ (1987) The larvae of some blowflies of medical and veterinary importance. Med Vet Entomol 1:121–125

    Article  CAS  PubMed  Google Scholar 

  • Etang J, Fondjo E, Chandre F, Morlais I, Brengues C, Nwane P et al (2006) First report of knockdown mutations in the malaria vector Anopheles gambiae from Cameroon. Am J Trop Med Hyg 74:795–797

    CAS  PubMed  Google Scholar 

  • Farnham AW, Sawicki RM (1976) Development of resistance to pyrethroids in insects resistant to other insecticides. Pestic Sci 7:278–282

    Article  CAS  Google Scholar 

  • Gao J-R, Yoon KS, Lee SH, Takano-Lee M, Edman JD, Meinking TL et al (2003) Increased frequency of the T929I and L932F mutations associated with knockdown resistance in permethrin-resistant populations of the human head louse, Pediculus capitis, from California, Florida, and Texas. Pestic Biochem Physiol 77:115–124

    Article  CAS  Google Scholar 

  • Gao J-R, Yoon KS, Frisbie RK, Coles GC, Clark JM (2006) Esterase-mediated malathion resistance in the human head louse, Pediculus capitis (Anoplura: Pediculidae). Pestic Biochem Physiol 85:28–37

    Article  CAS  Google Scholar 

  • Gao JR, Kozaki T, Leichter CA, Rinkevich FD, Shono T, Scott JG (2007) The A302S mutation in Rdl that confers resistance to cyclodienes and limited cross-resistance to fipronil is undetectable in field populations of house flies from the USA. Pest Biochem Physiol 88(1):66–70

    Article  CAS  Google Scholar 

  • Georghiou GP (1972) The evolution of resistance to pesticides. Annu Rev Ecol Syst 133–168

  • Gondhalekar AD, Scharf ME (2012) Mechanisms underlying fipronil resistance in a multiresistant field strain of the German cockroach (Blattodea: Blattellidae). J Med Entomol 49:122–131

    Article  CAS  PubMed  Google Scholar 

  • Gong M-Q, Gu Y, Hu X-B, Sun Y, Ma L, Li X-L et al (2005) Cloning and overexpression of CYP6F1, a cytochrome P450 gene, from deltamethrin-resistant Culex pipiens pallens. Acta Bioch Bioph Sin 37:317–326

    Article  CAS  Google Scholar 

  • Hassan MM, Widaa SO, Osman OM, Numiary MSM, Ibrahim MA, Abushama HM (2012) Insecticide resistance in the sand fly, Phlebotomus papatasi from Khartoum State, Sudan. Parasit Vectors 5:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    Article  CAS  PubMed  Google Scholar 

  • Hemingway J, Callaghan A, Kurtak DC (1991) Biochemical characterization of chlorphoxim resistance in adults and larvae of the Simulium damnosum complex (Diptera: Simulidae). Bull Entomol Res 81:401–6

    Article  CAS  Google Scholar 

  • Hemingway J, Small GJ, Monro AG (1993) Possible mechanisms of organophosphorus and carbamate insecticide resistance in German cockroaches (Dictyoptera: Blattelidae) from different geographical areas. J Econ Entomol 86:1623–1630

    Article  CAS  PubMed  Google Scholar 

  • Kaku K, Matsumura F (1994) Identification of the site of mutation within the M2 region of the GABA receptor of the cyclodiene-resistant German cockroach. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 108:367–376

    Article  CAS  PubMed  Google Scholar 

  • Kasai S, Scott J (2000) Overexpression of cytochrome P450 CYP6D1 is associated with monooxygenase-mediated pyrethroid resistance in house flies from Georgia. Pest Biochem Physiol 68:34–41

    Article  CAS  Google Scholar 

  • Khan HAA, Shad SA, Akram W (2012) Effect of livestock manures on the fitness of house fly, Musca domestica L. (Diptera: Muscidae). Parasitol Res 111:1165–1171

    Article  PubMed  Google Scholar 

  • Kim NJ, Chang KS, Lee WJ, Ahn YJ (2007) Monitoring of insecticide resistance in field-collected populations of Culex pipiens pallens (Diptera: Culicidae). J Asia Pac Entomol 10:257–261

    Article  CAS  Google Scholar 

  • Ko CJ, Elston DM (2004) Pediculosis. J Am Acad Dermatol 50:1–12

    Article  PubMed  Google Scholar 

  • Kobayashi M, Sasaki T, Saito N, Tamura K, Suzuki H, Watanabe H, Agui N (1999) Houseflies are not simple mechanical vectors of enterohemorragic Escherichia coli O157:H7. Am J Trop Med Hyg 61:625–629

    CAS  PubMed  Google Scholar 

  • Krafsur ES (2009) Tsetse flies: genetics, evolution, and role as vectors. Infect Genet Evol 9:124–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen M, Jespersen JB (2003) Larvicide resistance in Musca domestica (Diptera: Muscidae) populations in Denmark and establishment of resistant laboratory strains. J Econ Entomol 96:1300–1306

    Article  CAS  PubMed  Google Scholar 

  • Kristensen M, Jespersen JB, Knorr M (2004) Cross‐resistance potential of fipronil in Musca domestica. Pest Manag Sci 60:894–900

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Kasai S, Komagata O, Kobayashi M, Agui N, Kono Y et al (2007) Molecular characterization of two acetylcholinesterase cDNAs in Pediculus human lice. J Med Entomol 44:72–79

    Article  CAS  PubMed  Google Scholar 

  • Lemke LA, Koehler PG, Patterson RS (1989) Susceptibility of the cat flea (Siphonaptera: Pulicidae) to pyrethroids. J Econ Entomol 82:839–841

    Article  CAS  PubMed  Google Scholar 

  • Liu W-D (1990) The evolution of insecticides resistance of mosquitoes in China (in Chinese). Chin J Vec Biol Contr 1:41–44

    Google Scholar 

  • Liu N, Scott JG (1998) Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly. Insect Biochem Mol Biol 28:531–535

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Yue X (2000) Insecticide resistance and cross-resistance in the house fly (Diptera: Muscidae). J Econ Entomol 93:1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Valles SM, Dong K (2000) Novel point mutations in the German cockroach para sodium channel gene are associated with knockdown resistance (kdr) to pyrethroid insecticides. Insect Biochem Mol Biol 30:991–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macnair MR (1991) Genetica 84:213–219

    Article  Google Scholar 

  • Macoris MDLG, Andrighetti MTM, Takaku L, Glasser CM, Garbeloto VC, Bracco JE (2003) Resistance of Aedes aegypti from the state of São Paulo, Brazil, to organophosphates insecticides. Mem I Oswaldo Cruz 98:703–708

    Article  CAS  Google Scholar 

  • Malik A, Singh N, Satya S (2007) House fly (Musca domestica): a review of control strategies for a challenging pest. J Environ Sci Health Part B 42:453–469

    Article  CAS  Google Scholar 

  • Mazzarri MB, Georghiou GP (1995) Characterization of resistance to organophosphate, carbamate, and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. J Am Mosq Control Assoc 11:315–322

    CAS  PubMed  Google Scholar 

  • McKenzie JA (1985) In Resistance in nematodes to anthelmintic drugs (Anderson, N. and Wailer, P.J.. eds). CSIRO. Australian Wool Corporation, pp. 89–95.

  • McKenzie JA, O’farrell K (1993) Modification of developmental instability and fitness: malathion-resistance in the Australian sheep blowfly, Lucilia cuprina. Genetica 89:67–76

    Article  Google Scholar 

  • Metcalf RL (1989) Insect resistance to insecticides. Pestic Sci 26:333–358

    Article  CAS  Google Scholar 

  • Montagna CM, Anguiano OL, Gauna LE, Pechen de D’Angelo AM (1999) Resistance to pyrethroids and DDT in a field-mixed population of Argentinean black flies (Diptera: Simuliidae). J Econ Entomol 92:1243–1245

    Article  CAS  Google Scholar 

  • Montagna CM, Anguiano OL, Gauna LE, Pechen DD, Angelo AM (2003) Mechanisms of resistance to DDT and pyrethroids in Patagonian populations of Simulium blackflies. Med Vet Entomol 17:95–101

    Article  CAS  PubMed  Google Scholar 

  • Montagna CM, Gauna LE, D’Angelo APD, Anguiano OL (2012) Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina. Mem Inst Oswaldo Cruz 107:458–465

    Article  CAS  PubMed  Google Scholar 

  • Moyses EW (1995) Measurement of insecticide resistance in the adult cat flea. In: Meola RW (ed) Proceedings of the Third International Symposium on Ectoparasites of Pets, 2-4 April, College Station. Texas A&M University, College Station TX, TX, pp 21–34

    Google Scholar 

  • Murugan K, Vadivalagan C, Karthika P, Panneerselvam C, Paulpandi M, Subramaniam J et al (2015) DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance. Parasitol Res 11:1–15

    Google Scholar 

  • Naeem A, Jaleel W, Saeed Q, Zaka SM, Saeed S, Naqqash MN et al. (2014) Life style of people and surveillance of management related to cockroaches in Southern Punjab, Pakistan. Turk J Agri Nat Sci 1:227–233

  • Naqqash MN, Saeed Q, Saeed S, Jaleel W, Zaka SM, Faheem M et al (2014) A cross sectional survey of community awareness about typhoid and its major vector cockroach in southern Punjab, Pakistan. Middle-East J Sci Res 21:602–608

    Google Scholar 

  • Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ, Oakeshott JG (1997) A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci 94:7464–7468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker AG, Russell RJ, Delves AC, Oakeshott JG (1991) Biochemistry and physiology of esterases in organophosphate-susceptible and-resistant strains of the Australian sheep blowfly, Lucilia cuprina. Pestic Biochem Physiol 41:305–318

    Article  CAS  Google Scholar 

  • Paul A, Harrington LC, Scott JG (2006) Evaluation of novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae). J Med Entomol 43:55–60

    Article  CAS  PubMed  Google Scholar 

  • Peiris HTR, Hemingway J (1993) Characterisation and inheritance of elevated esterases in organophosphorus and carbamate insecticide resistant Culex quinquefasciatus (Diptera: Culicidae) from Sri Lanka. Bull Entomol Res 83:127–132

    Article  CAS  Google Scholar 

  • Pethuan S, Jirakanjanakit N, Saengtharatip S, Chareonviriyaphap T, Kaewpa D, Rongnoparut P (2007) Biochemical studies of insecticide resistance in Aedes aegypti (Stegomyia) and Aedes albopictus (Stegomyia) (Diptera: Culicidae) in Thailand. Trop Biomed 24:7–15

    CAS  PubMed  Google Scholar 

  • Pimprikar GD, Georghiou GP (1979) Mechanisms of resistance to diflubenzuron in the house fly, Musca domestica (L.). Pest Biochem Physiol 12:10–22

    Article  CAS  Google Scholar 

  • Porretta D, Gargani M, Bellini R, Medici A, Punelli F, Urbanelli S (2008) Defence mechanisms against insecticides temephos and diflubenzuron in the mosquito Aedes caspius: the P‐glycoprotein efflux pumps. Med Vet Entomol 22:48–54

    Article  CAS  PubMed  Google Scholar 

  • Pridgeon JW, Zhang L, Liu N (2003) Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach, Blattella germanica (L.). Gene 314:157–163

    Article  CAS  PubMed  Google Scholar 

  • Qiao CL, Sun ZQ, Liu JE (1999) New esterase enzymes involved in organophosphate resistance in Culex pipiens (Diptera: Culicidae) from Guang Zhou, China. J Med Entomol 36:666–670

    Article  CAS  PubMed  Google Scholar 

  • Ranson H, Jensen B, Wang X, Prapanthadara L, Hemingway J, Collins FH (2000) Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae. Insect Mol Biol 9:499–507

    Article  CAS  PubMed  Google Scholar 

  • Ranson H, Paton MG, Jensen B, McCarroll L, Vaughan A, Hogan JR et al (2004) Genetic mapping of genes conferring permethrin resistance in the malaria vector, Anopheles gambiae. Insect Mol Biol 13:379–386

    Article  CAS  PubMed  Google Scholar 

  • Ranson H, Abdallah H, Badolo A, Guelbeogo WM, Kerah-Hinzoumbé C, Yangalbé-Kalnoné E et al (2009) Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malar J 8:299

    Article  PubMed  PubMed Central  Google Scholar 

  • Riordan EK (1987) Insecticide tolerance of pregnant females of Glossina palpalis palpalis (Robineau-Desvoidy) (Diptera: Glossinidae). Bull Entomol Res 77:213–226

    Article  CAS  Google Scholar 

  • Rodríguez MM, Bisset J, Ruiz M, Soca A (2002) Cross-resistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. J Med Entomol 39:882–888

    Article  PubMed  Google Scholar 

  • Roush RT, McKenzie JA (1987) Annu Rev Entomol 32:361–380

    Article  CAS  PubMed  Google Scholar 

  • Scott JG (1999) Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol 29:757–777

    Article  CAS  PubMed  Google Scholar 

  • Scott JG, Alefantis TG, Kaufman PE, Rutz DA (2000) Insecticide resistance in house flies from caged-layer poultry facilities. Pest Manag Sci 147–153

  • Service MW (1993) Mosquitoes (Culicidae). In: Lane RP, Crosskey RW (eds) Medical insects and arachnids. Chapman & Hall, London, pp 120–240

    Chapter  Google Scholar 

  • Shi J, Lan Z, Zhang XG (2011) Characterisation of spinosad 1 resistance in the housefly Musca domestica (Diptera: Muscidae). Pest Manag Sci 67:335–340

    Article  CAS  PubMed  Google Scholar 

  • Shono T, Kasai S, Kamiya E, Kono Y, Scott JG (2002) Genetics and mechanisms of permethrin resistance in the YPER strain of house fly. Pestic Biochem Physiol 73:27–36

    Article  CAS  Google Scholar 

  • Valles SM, Koehler PG, Brenner RJ (1997) Antagonism of fipronil toxicity by piperonyl butoxide and S, S, S-tributyl phosphorotrithioate in the German cockroach (Dictyoptera: Blattellidae). J Econ Entomol 90:1254–1258

    Article  CAS  Google Scholar 

  • Vatandoost H, McCaffery HR, Townson H (1998) An electrophysiological investigation of target site insensitivity in permethrin-resistant and susceptible strain of Anopheles stephensi. Iran J Publ Health 27:29–38

    Google Scholar 

  • Walsh S, Dolden T, Moores G, Kristensen M, Lewis T, Devonshire AL, Williamson M (2001) Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem J 359:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei SH, Clark AG, Syvanen M (2001) Identification and cloning of a key insecticide-metabolizing glutathione S-transferase (MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica. Insect Biochem mol Biol 31:1145–1153

    Article  CAS  PubMed  Google Scholar 

  • WHO (2011) World Malaria Report 2011. World Health Organization, Geneva

    Google Scholar 

  • WHO-World Health Organization 2003. Dengue (online, access in 03/06/2003). Available at http://www.who.int/inf-fs/en/fact117.html

  • WHO-World Health Organization, Expert Committee on Vector Biology and Control (1992). Vector resistance to pesticides, 818 report, unpublished document, WHO technical report series, pp. 63

  • Williamson MS, Denholm I, Bell CA, Devonshire AL (1993) Knockdown resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly (Musca domestica). Mol Gen Genet MGG 240:17–22

    Article  CAS  PubMed  Google Scholar 

  • Yoon KS, Gao J-R, Lee SH, Coles GC, Meinking TL, Taplin D et al (2004) Resistance and cross-resistance to insecticides in human head lice from Florida and California. Pestic Biochem Physiol 80:192–201

    Article  CAS  Google Scholar 

  • Zhang L, Harada K, Shono T (1997) Genetic analysis of pyriproxyfen resistance in the housefly, Musca domestica L. Appl Entomol Zool 32:217–226

    CAS  Google Scholar 

  • Zhang L, Gao X, Liang P (2007) Beta-cypermethrin resistance associated with high carboxylesterase activities in a strain of house fly, Musca domestica (Diptera: Muscidae). Pest Biochem Physiol 89:65–72

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Nadir Naqqash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naqqash, M.N., Gökçe, A., Bakhsh, A. et al. Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115, 1363–1373 (2016). https://doi.org/10.1007/s00436-015-4898-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4898-9

Keywords

Navigation