Skip to main content
Log in

In vitro susceptibility to fungicides by invertebrate-pathogenic and saprobic fungi

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The effect of five fungicides, benomyl (1 mg/l), dodine (50 mg/l), manzate (100 mg/l), cupric sulphate (200 mg/l) and thiabendazole (4 mg/l) was tested under in␣vitro conditions on development of 15 isolates of fungi pathogenic for insects and␣other invertebrates (Beauveria brongniartii, Culicinomyces clavisporus, Duddingtonia flagrans, Hirsutella thompsonii, two Metarhizium anisopliae, Nomuraea rileyi, two Isaria/Paecilomyces spp., and Sporothrix insectorum) and 13 isolates of contaminant fungi (five Aspergillus spp., Cladosporium cladosporioides, Cunninghamella echinulata, Fusarium roseum, Gliocladium sp., Mortierella isabellina, Mucor plumbeus, Rhizopus arrhizus and Trichothecium roseum) originating mostly from tree-hole breeding sites of mosquitoes. Most pathogenic and contaminant fungi had clear patterns of susceptibility or resistance to tested concentration of the fungicide. Development of both pathogenic and contaminant fungi on fungicide-supplemented medium varied among fungi and fungicides tested. Minimal inhibition of pathogenic fungi was found for cupric sulphate, benomyl, dodine, thiabendazole < manzate. The highest inhibition of contaminants was obtained with thiabendazole > benomyl and dodine > manzate and cupric sulphate. Thiabendazole was the most appropriate fungicide to isolate fungi pathogenic to invertebrates from substrates with high water contents and rich in organic material. The results underline the importance of adapting both a fungicide and its concentration for a selective medium for isolating specific target fungi and while selecting against possible contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samish M, Rehacek J. Pathogens and predators of ticks and their potential in biological control. Ann Rev Entomol 1999;44:159–82.

    Article  CAS  Google Scholar 

  2. Luz C, Rocha LFN, Nery GV, Magalhães BP, Tigano MS. Activity of oil-formulated Beauveria bassiana against Triatoma sordida in peridomestic areas in Central Brazil. Mem Inst Oswaldo Cruz 2004;99:211–8.

    Article  PubMed  Google Scholar 

  3. Scholte EJ, Knols BGJ, Samson RA, Takken W. Entomopathogenic fungi for mosquito control: a review. J Insect Sci 2004;4/19: 24 pp; available online: insectscience.org/4.19.

  4. Mietkiewski RT, Pell JK, Clark SJ. Influence of pesticide use on the natural occurrence of entomopathogenic fungi in arable soils in the UK: field and laboratory comparisons. Biocontrol Sci Technol 1997;7:565–75.

    Article  Google Scholar 

  5. Zermeno MAA, Barranco HN, Mier T, Toriello C. Effect of agro-chemicals on in␣vitro growth of the entomopathogenic fungi Metarhizium anisopliae (Metsch) Sor and Paecilomyces fumosoroseus (Wize) Brown & Smith. Rev Latinoam Microbiol 1999;41:223–9.

    Google Scholar 

  6. Devi PSV, Anitha C, Prasad YG. Compatibility of entomopathogenic fungus Nomuraea rileyi with commonly used pesticides. Ind J Agricultural Sci 2002;72:370–2.

    Google Scholar 

  7. Loureiro ES, Moino A, Arnosti A, Souza GC. Efeito de produtos fitossanitários químicos utilizados em alface e crisântemo sobre fungos entomopatogênicos. Neotrop Entomol 2002;31:263–9.

    Article  CAS  Google Scholar 

  8. Gomez DRS, Delpin KE, Moscardi F, Nozaki MH. The impact of fungicides on Nomuraea rileyi (Farlow) Samson epizootics and on population of Anticarsia gemmatalis Hubner (Lepidoptera: Noctuidae), on soybean. Neotrop Entomol 2003;32:287–91.

    Google Scholar 

  9. Kouassi M, Coderre D, Todorova SI. Effects of the timing of applications on the incompatibility of three fungicides and one isolate of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina). J Appl Entomol 2003;127:421–6.

    Article  CAS  Google Scholar 

  10. Er MK, Gokce A. Effects of selected pesticides used against glasshouse tomato pests on colony growth and conidial germination of Paecilomyces fumosoroseus. Biol Control 2004;31:398–404.

    Article  CAS  Google Scholar 

  11. Beilhartz VC, Parberry DG, Swart HJ. Dodine: a selective agent for certain soil fungi. Trans British Mycol Soc 1982;79:507–11.

    Article  Google Scholar 

  12. Yaginuma K, Takagi K. Improvement of a selective medium for isolation of Metarhizium anisopliae (Metschnikoff) Sorokin. Jap J Appl Entomol Zool 1986;30:300–1.

    Google Scholar 

  13. Chase AR, Osborne LS, Ferguson VM. Selective isolation of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae from an artificial potting medium. Florida Entomologist 1986;69:285–92.

    Article  Google Scholar 

  14. Mitchell DJ, Mitchell MEK, Dickson DW. A semi-selective medium for the isolation of Paecilomyces lilacinus from soil. J Nematol 1987;19:255–6.

    CAS  PubMed  Google Scholar 

  15. Panter C, Frances SP. A more selective medium for Culicinomyces clavisporus. J Invertebr Pathol 2003;82:198–200.

    Article  PubMed  CAS  Google Scholar 

  16. SAS Institute Inc. 2002. What’s New in SAS® Software for Release 8.1, Cary, NC, SAS Institute Inc.

  17. Samson RA. Paecilomyces and some allied Hyphomycetes. Stud Mycol 1974;6:1–119.

    Google Scholar 

  18. Luangsa-ard JJ, Hywel-Jones NL, Manoch L, Samson RA. On the relationships of Paecilomyces sect. Isarioidea species. Mycol Res 2005;109:581–9.

    Article  PubMed  CAS  Google Scholar 

  19. Seif AI, Shaarawi FA. Preliminary field trials with Culicinomyces clavosporus against some Egyptian mosquitoes in selected habitats. J Egypt Soc Parasitol 2003;33:291–304.

    PubMed  Google Scholar 

  20. Paraud C, Pors I, Chartier C. Activity of Duddingtonia flagrans on Trichostrongylus colubriformis larvae in goat feces and interaction with a benzimidazole treatment. Small Ruminant Res 2005;55:199–207.

    Article  Google Scholar 

  21. Tanzini MR, Alves SB, Tamai MA, Moraes GJ, Ferla NJ. An epizootic of Calacarus heveae (Acari: Eriophyidae) caused by Hirsutella thompsonii on rubber trees. Exp Appl Acarol 2000;24:141–4.

    Article  PubMed  CAS  Google Scholar 

  22. Devi KU, Murali MCH, Padmavathi J, Ramesh K. Susceptibility to fungi of cotton boll worms before and after a natural epizootic of the entomopathogenic fungus Nomuraea rileyi (Hyphomycetes). Biocontrol Sci Technol 2003;13:367–71.

    Article  Google Scholar 

  23. Veen KH, Ferron P. A selective medium for isolation of Beauveria tenella and Metarhizium anisopliae. J Invertebr Pathol 1966;8:268–9.

    Article  PubMed  CAS  Google Scholar 

  24. Sneh B. Isolation of Metarhizium anisopliae from insects on an improved selective medium based on wheat germ. J Invertebr Pathol 1991;58:269–73.

    Article  Google Scholar 

  25. Liu ZY, Milner RJ, McRae CF, Lutton GG. The use of dodine in selective media for the isolation of Metarhizium spp from soil. J Invertebr Pathol 1993;62:248–51.

    Article  Google Scholar 

  26. Keller S, Kessler P, Schweizer C. Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metarhizium anisopliae. Biocontrol 2003;48:307–19.

    Article  Google Scholar 

  27. Hughes WOH, Thomsen L, Eilenberg J, Boomsma JJ. Diversity of entomopathogenic fungi near leaf-cutting ant nests in a neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. J Invertebr Pathol 2004;85:46–53.

    Article  PubMed  CAS  Google Scholar 

  28. Ilan DIS, Reilly CC, Hotchkiss MW, Wood BW. The potential for enhanced fungicide resistance in Beauveria bassiana through strain discovery and artificial selection. J␣Invertebr Pathol 2002;86:86–93.

    Article  CAS  Google Scholar 

  29. Badran RAM, Aly MZY. Studies on the mycotic inhabitants of Culex pipiens collected from fresh water ponds in Egypt. Mycopathologia 1995;132:105–10.

    Article  Google Scholar 

  30. Sur B, Bihri V, Sharma A, Basu SK. Survey of termite-inhabited soil and mosquito breeding sites in Lucknow, India for potential mycopathogens of Anopheles stephensi. Mycopathologia 1999;144:77–80.

    Article  CAS  Google Scholar 

  31. Moraes AM, Corrado LM, Holanda VL, Costa GL, Ziccardi M, Oliveira RL, Oliveira PC. Aspergillus from Brazilian mosquitoes – I. Genera Aedes and Culex from Rio de Janeiro State. Mycotaxon 2001;78:413–22.

    Google Scholar 

  32. Lastra CCL, Garcia JJ, Micieli MV. Microecology of entomopathogenic fungi from aquatic environments [Documentos Embrapa Soja]. Londrina, Brazil: Embrapa Soja 2002;184:83–5.

  33. Vasanthi V, Hoti SL. Microbial flora in gut of Culex quinquefasciatus breeding in cess pits. Southeast Asian J Trop Med Public Health 1992;23:312–7.

    PubMed  CAS  Google Scholar 

  34. Vijayan V, Balarajan K. Metabolites of fungi and Actinomycetes active against mosquito larvae. Ind J Med Res Section A, Inf Dis 1991;93:115–7.

    CAS  Google Scholar 

  35. Moraes AM, Costa GL, Barcellos MZ, Oliveira RL, Oliveira PC. The entomopathogenic potential of Aspergillus spp in mosquitoes vectors of tropical diseases. J Basic Microbiol 2001;41:45–9.

    Article  PubMed  Google Scholar 

  36. Sundarapandian S, Sundaram MD, Tholkappian P, Balasubramanian V. Mosquitocidal properties of indigenous fungi and Actinomycetes against Culex quinquefasciatus Say. J Biol Control 2002;16:89–91.

    Google Scholar 

  37. Govindarajan M, Jebanesan A, Reetha D. Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, Culex quinquefasciatus Say. Trop Biomed 2005;22:1–3.

    PubMed  CAS  Google Scholar 

  38. Jayshree RS, Shafiulla M, George J, David JK, Bapsy PP, Chakrabarti A. Microscopic, cultural and molecular evidence of disseminated invasive aspergillosis involving the lungs and the gastrointestinal tract. J Med Microbiol 2006;55:961–4.

    Article  PubMed  CAS  Google Scholar 

  39. Segal BH, Walsh TJ. Current approaches to diagnosis and treatment of invasive aspergillosis. Am J Respir Crit Care Medic 2006;173:707–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Janine de Aquino Lemos, IPTSP, UFG, Goiânia, Brazil, Heloisa Frazão, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil, and Richard A. Humber, USDA-ARS, Ithaca, NY, USA, for providing fungi, R.A.H. for the constructive review of the manuscript, and the National Council of Scientific and Technological Development (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Luz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luz, C., Netto, M.C.B. & Rocha, L.F.N. In vitro susceptibility to fungicides by invertebrate-pathogenic and saprobic fungi. Mycopathologia 164, 39–47 (2007). https://doi.org/10.1007/s11046-007-9020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-007-9020-0

Keywords

Navigation