Skip to main content

Transgenic Implications for Biotic and Abiotic Stress Tolerance in Agricultural Crops

  • Chapter
  • First Online:
Agricultural Biotechnology: Latest Research and Trends

Abstract

Plants encounter variable stresses in the environment which lead to huge crop losses worldwide. Environmental stresses that a plant can undergo are categorized into two categories as (a) biotic and (b) abiotic stress. Biotic stresses include attacks by different insects, nematodes, and microbial pathogens like fungi, bacteria, and viruses. While on the other hand, abiotic stresses include high salinity, heat, cold, drought, osmotic stress, and heavy metal. Plants are quite susceptible to both kinds of stressful situations and have adopted different mechanisms to encounter these situations. Plants sense these stresses and stimulated specific stress responses thereby activating different stress response signaling pathways and generating appropriate cellular responses helping in combating these stresses. This chapter gives an overview of the major stresses, plants encounter during growth and transgenic implications that have been made to modify these stress-tolerant properties to produce crops with improved crop yield and minimize crop losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad P, Favery B, Rosso M-N, Castagnone-Sereno P (2003) Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Mol Plant Pathol 4:217–224

    Article  CAS  PubMed  Google Scholar 

  • Acharya K, Pal AK, Gulati A, Kumar S, Singh AK, Ahuja PS (2013) Overexpression of Camellia sinensis thaumatin-like protein, CsTLP in potato confers enhanced resistance to Macrophomina phaseolina and Phytophthora infestans infection. Mol Biotechnol 54:609–622

    Article  CAS  PubMed  Google Scholar 

  • Adem GD, Roy SJ, Huang Y et al (2017) Expressing Arabidopsis thaliana V-ATPase subunit C in barley (Hordeum vulgare) improves plant performance under saline condition by enabling better osmotic adjustment. Funct Plant Biol 44:1147–1159. https://doi.org/10.1071/FP17133

    Article  CAS  PubMed  Google Scholar 

  • Aduse Poku S, Nkachukwu Chukwurah P, Aung HH, Nakamura I (2020) Over-expression of a melon Y3SK2-type LEA gene confers drought and salt tolerance in transgenic tobacco plants. Plants (Basel) 9. https://doi.org/10.3390/plants9121749

  • Ahrenholtz I, Harms K, De Vries J, Wackernagel W (2000) Increased killing of bacillus subtilison the hair roots of transgenic T4 lysozyme-producing potatoes. Appl Environ Microbiol 66:1862–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  CAS  PubMed  Google Scholar 

  • Akkouh O, Ng TB, Cheung RC, Wong JH, Pan W, Ng CC et al (2015) Biological activities of ribosome-inactivating proteins and their possible applications as antimicrobial, anticancer, and anti-pest agents and in neuroscience research. Appl Microbiol Biotechnol 99:9847–9863

    Article  CAS  PubMed  Google Scholar 

  • Alexander RD, Wendelboe-Nelson C, Morris PC (2019) The barley transcription factor HvMYB1 is a positive regulator of drought tolerance. Plant Physiol Biochem 142:246–253. https://doi.org/10.1016/j.plaphy.2019.07.014

    Article  CAS  PubMed  Google Scholar 

  • Altpeter F, Diaz I, McAuslane H et al (1999) Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol Breed 5:53–63

    Article  CAS  Google Scholar 

  • Ansari F, Naderi R, Dehghanian C (2015) Study on the protective function of cloisite incorporated silane sol–gel coatings cured at different conditions. Appl Clay Sci 114:93–102

    Article  CAS  Google Scholar 

  • Anu K, Jessymol KK, Chidambareswaren M, Gayathri GS, Manjula S (2015) Downregulation of osmotin (PR5) gene by virus-induced gene silencing (VIGS) leads to susceptibility of resistant piper colubrinum link. To the oomycete pathogen Phytophthora capsici Leonian. Indian J Exp Biol 53(6):329–334

    CAS  PubMed  Google Scholar 

  • Anwar A, She M, Wang K, Ye X (2020) Cloning and molecular characterization of Triticum aestivum ornithine amino transferase (TaOAT) encoding genes. BMC Plant Biol 20:187. https://doi.org/10.1186/s12870-020-02396-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arce P, Moreno M, Gutierrez M, Gebauer M, Dell'Orto P, Torres H, Acuna I, Oliger P, Venegas A, Jordana X, Kalazich J, Holuigue L (1999) Enhanced resistance to bacterial infection by Erwinia carotovora subsp. atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes. Am J Potato Res 76:169–177

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543

    Article  Google Scholar 

  • Bernstein L, Bosch P, Canziani O et al (2008) IPCC, 2007: climate change 2007: synthesis report. IPCC, Geneva

    Google Scholar 

  • Bi H, Zhao Y, Li H, Liu W (2020) Wheat heat shock factor TaHsfA6f increases ABA levels and enhances tolerance to multiple abiotic stresses in transgenic plants. Int J Mol Sci 21. https://doi.org/10.3390/ijms21093121

  • Bian XX, Shen FB, Chen YW, Wang BN, Deng M, Meng YF (2010) PEGylation of alpha-momorcharin: synthesis and characterization of novel anti-tumor conjugates with therapeutic potential. Biotechnol Lett 32:883–890

    Article  CAS  PubMed  Google Scholar 

  • Boller T (1993) Antimicrobial functions of the plant hydrolases, chitinases and β-1,3-glucanases. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses. Kluwer Academic Press, Dordrecht, pp 391–400

    Chapter  Google Scholar 

  • Boman HG (1991) Antibacterial peptides: key components needed in immunity. Cell 65:205–207

    Article  CAS  PubMed  Google Scholar 

  • Bonfim K, Faria JC, Nogueira EO et al (2007) RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant-Microbe Interact 20:717–726

    Article  CAS  PubMed  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E et al (2000) Responses to abiotic stresses. In: Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, MD, pp 149–158

    Google Scholar 

  • Broadway RM, Duffey SS (1986) The effect of dietary protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol 32(8):673–680

    Article  CAS  Google Scholar 

  • Brookes G, Barfoot P (2015) Global income and production impacts of using GM crop technology 1996–2013. GM Crops Food 6:13–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai D et al (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    Article  CAS  PubMed  Google Scholar 

  • Cai R, Dai W, Zhang C et al (2017) The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta 246:1215–1231

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Nguyen BH, Xie Y et al (2017) Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice. Front Plant Sci 8:1102. https://doi.org/10.3389/fpls.2017.01102

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Chen HM, Wang W, Smith D, Chan SC (1997) Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta 1336:171–179

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Li N, Dong L, Zhang D, Fan S, Jiang L, Wang X, Xu P, Zhang S (2015) Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean. Front Plant Sci. https://doi.org/10.3389/fpls.2015.01024

  • Chinnusamy V, Ohta M, Kanrar S et al (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054. https://doi.org/10.1101/gad.1077503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra R, Saini R (2014) Transformation of blackgram (Vigna mungo (L.) Hepper) by barley chitinase and ribosome-inactivating protein genes towards improving resistance to Corynespora leaf spot fungal disease. Appl Biochem Biotechnol 174:2791–2800

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2017) Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Front Plant Sci 8:410

    Article  PubMed  PubMed Central  Google Scholar 

  • Cieśla A, Mituła F, Misztal L et al (2016) A role for barley calcium-dependent protein kinase CPK2a in the response to drought. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01550

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruickshank IAM, Perrin DR (1960) Isolation of a phytoalexin from Pisum sativum L. Nature 187:799–800

    Article  CAS  PubMed  Google Scholar 

  • Cui N, Sun X, Sun M et al (2015) Overexpression of OsmiR156k leads to reduced tolerance to cold stress in rice (Oryza Sativa). Mol Breed 35:214

    Article  Google Scholar 

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    Article  PubMed  Google Scholar 

  • de Virgilio M, Lombardi A, Caliandro R, Fabbrini MS (2010) Ribosome inactivating proteins: from plant defense to tumor attack. Toxins 2:2699–2737

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 62:3563–3573. https://doi.org/10.1093/jxb/err046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djemal R, Mila I, Bouzayen M et al (2018) Molecular cloning and characterization of novel WIN1/SHN1 ethylene responsive transcription factor HvSHN1 in barley (Hordeum vulgare L.). J Plant Physiol 228:39–46. https://doi.org/10.1016/j.jplph.2018.04.019

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Zhao Y, Ran X, Guo L, Zhao D (2017) Overexpression of a new chitinase gene EuCHIT2 enhances resistance to Erysiphe cichoracearum DC. In tobacco plants. Int J Mol Sci 18(11):2361

    Article  PubMed Central  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763. https://doi.org/10.1046/j.1365-313X.2003.01661.x

    Article  CAS  PubMed  Google Scholar 

  • Düring K, Porsch P, Fladung M, Lörz H (1993) Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J 3:587–598

    Article  Google Scholar 

  • Easterling DR, Evans JL, Groisman PY et al (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–426

    Article  Google Scholar 

  • El-Esawi MA, Al-Ghamdi AA, Ali HM, Ahmad M (2019) Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.). Genes (Basel) 10. https://doi.org/10.3390/genes10020163

  • Elvira MI, Galdeano MM, Gilardi P, García-Luque I, Serra MT (2008) Proteomic analysis of pathogenesis related pro-tein (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. J Exp Bot 59:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Ernst K et al (2002) The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J 31:127–136

    Article  CAS  PubMed  Google Scholar 

  • Fartyal D, Agarwal A, James D et al (2018) Developing dual herbicide tolerant transgenic rice plants for sustainable weed management. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  • Ferdous J, Whitford R, Nguyen M et al (2017) Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Funct Integr Genomics 17:279–292. https://doi.org/10.1007/s10142-016-0526-8

    Article  CAS  PubMed  Google Scholar 

  • Fierens E, Gebruers K, Voet AR, De Maeyer M, Courtin CM et al (2009) Biochemical and structural characterization of TLXI, the Triticum aestivum L. thaumatin-like xylanase inhibitor. J Enzyme Inhib Med Chem 24:646–654

    Article  CAS  PubMed  Google Scholar 

  • Fischer RAT, Edmeades GO (2010) Breeding and cereal yield Progress. Crop Sci 50:S-85–S-98. https://doi.org/10.2135/cropsci2009.10.0564

    Article  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manag 78:15–24

    Article  Google Scholar 

  • Fu J, Wu H, Ma S et al (2017) OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice. Front Plant Sci 8:2108. https://doi.org/10.3389/fpls.2017.02108

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujimori N, Enoki S, Suzuki A, Nazninc HA, Shimizub M, Suzuki S (2016) Grape apoplasmic −1,3-glucanase confers fungal disease resistance in Arabidopsis. Sci Hortic 200:105–110

    Article  CAS  Google Scholar 

  • Gambhir G, Kumar P, Aggarwal G, Srivastava DK, Thakur AK (2020) Expression of cry1Aa gene in cabbage imparts resistance against diamondback moth (Plutella xylostella). Biologia Futura 71(1):165–173

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Wu M, Zhang M et al (2018) Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty. Plant Mol Biol 97:311–323. https://doi.org/10.1007/s11103-018-0739-4

    Article  CAS  PubMed  Google Scholar 

  • Gilbert LA, Larson MH, Morsut L et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451. https://doi.org/10.1016/j.cell.2013.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Gonzales-Salazar R, Cecere B, Ruocco M, Rao R, Corrado G (2017) A comparison between constitutive and inducible transgenic expression of the PhRIP I gene for broad-spectrum resistance against phytopathogens in potato. Biotechnol Lett 39:1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Green JM, Castle LA (2010) Transitioning from single to multiple herbicide-resistant crops. In: Glyphosate resistance in crops and weeds: history, development, and management. Wiley, New York, pp 67–91

    Chapter  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777

    Article  CAS  PubMed  Google Scholar 

  • Guan QJ, Ma HY, Wang ZJ et al (2016) A rice LSD1-like-type ZFP gene OsLOL5 enhances saline-alkaline tolerance in transgenic Arabidopsis thaliana, yeast and rice. BMC Genomics 17:142. https://doi.org/10.1186/s12864-016-2460-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Xing R, Liu S et al (2008) The influence of molecular weight of quaternized chitosan on antifungal activity. Carbohydr Polym 71:694–697

    Article  CAS  Google Scholar 

  • Hajyzadeh M, Turktas M, Khawar KM, Unver T (2015) miR408 overexpression causes increased drought tolerance in chickpea. Gene 555:186–193

    Article  CAS  PubMed  Google Scholar 

  • Hayes BM, Bleackley MR, Wiltshire JL, Anderson MA, Traven A et al (2013) Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans. Antimicrob Agents Chemother 57:3667–3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Shi X, Wang Y et al (2017) Arabidopsis ANAC069 binds to C [A/G] CG [T/G] sequences to negatively regulate salt and osmotic stress tolerance. Plant Mol Biol 93:369–387

    Article  CAS  PubMed  Google Scholar 

  • Heap I, Duke SO (2018) Overview of glyphosate-resistant weeds worldwide. Pest Manag Sci 74:1040–1049

    Article  CAS  PubMed  Google Scholar 

  • Heidarvand L, Amiri RM (2010) What happens in plant molecular responses to cold stress? Acta Physiol Plant 32:419–431

    Article  CAS  Google Scholar 

  • Hilder VA, Gatehouse AM, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330(6144):160–163

    Article  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Cho J-I, Han M et al (2010) The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol 167:1512–1520. https://doi.org/10.1016/j.jplph.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J et al (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 103:12987–12992. https://doi.org/10.1073/pnas.0604882103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua J (2009) From freezing to scorching, transcriptional responses to temperature variations in plants. Curr Opin Plant Biol 12:568–573

    Article  CAS  PubMed  Google Scholar 

  • Huang MX, Hou P, Wei Q, Xu Y, Chen F (2008) A ribosome-inactivating protein (curcin 2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco. Plant Growth Regul 54:115–123

    Article  CAS  Google Scholar 

  • Hultmark D, Engström A, Andersson K et al (1983) Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J 2:571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibeas JI, Lee H, Damsz B, Prasad DT, Pardo JM, Hasegawa PM, Bressan RA, Narasimhan ML (2000) Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant J 23:375–383

    Article  CAS  PubMed  Google Scholar 

  • Ibeas JI, Yun DJ, Damsz B, Narasimhan ML, Uesono Y, Ribas JC et al (2001) Resistance to the plant PR-5 protein osmotin in the model fungus Saccharomyces cerevisiae is mediated by the regulatory effects of SSD1 on cell wall composition. Plant J 25:271–280

    Article  CAS  PubMed  Google Scholar 

  • Imai R, Chang L, Ohta A et al (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243–248

    Article  CAS  PubMed  Google Scholar 

  • Jabeen N, Chaudhary Z, Gulfraz M, Rashid H, Mirza B (2015) Expression of rice chitinase gene in genetically engineered tomato confers enhanced resistance to fusarium wilt and early blight. Plant Pathol J 31(3):252–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaglo-Ottosen KR (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106. https://doi.org/10.1126/science.280.5360.104

    Article  CAS  PubMed  Google Scholar 

  • Jalakas P, Huang Y-C, Yeh Y-H et al (2017) The role of enhanced responses to ABA1 (ERA1) in arabidopsis stomatal responses is beyond ABA signaling. Plant Physiol 174:665–671. https://doi.org/10.1104/pp.17.00220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaspers P, Kangasjärvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138:405–413

    Article  CAS  PubMed  Google Scholar 

  • Jaynes JM, Nagpala P, Destefanobeltran L, Huang JH, Kim JH, Denny T, Cetiner S (1993) Expression of a cecropin-B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas Solanacearum. Plant Sci 89:43–53

    Article  CAS  Google Scholar 

  • Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants. Springer, Berlin, Heidelberg, pp 67–132

    Chapter  Google Scholar 

  • Jha S, Chattoo BB (2010) Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res 19:373–384

    Article  CAS  PubMed  Google Scholar 

  • Jin Y-M, Piao R, Yan Y-F et al (2018) Overexpression of a new zinc finger protein transcription factor OsCTZFP8 improves cold tolerance in rice. Int J Genom 2018:5480617. https://doi.org/10.1155/2018/5480617

    Article  CAS  Google Scholar 

  • Kamboj R, Tiwari IM, Devanna BN, Botella JR, Sharma V, Sharma TR (2017) Novel Chitinase gene LOC_Os11g47510 from Indica Rice Tetep provides enhanced resistance against sheath blight pathogen Rhizoctonia solani in rice. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00596

  • Kang Z, Qin T, Zhao Z (2019) Overexpression of the zinc finger protein gene OsZFP350 improves root development by increasing resistance to abiotic stress in rice. Acta Biochim Pol 66:183–190. https://doi.org/10.18388/abp.2018_2765

    Article  CAS  PubMed  Google Scholar 

  • Katam R, Chibanguza K, Latinwo LM, Smith D (2015) Proteome biomarkers in xylem reveal pierce’s disease tolerance in grape. J Proteom Bioinform 8:217–224

    Google Scholar 

  • Kato A, Nakamura S, Ibrahim H, Matsumi T, Tsumiyama C, Kato M (1998) Production of genetically modified lysozymes having extreme heat stability and antimicrobial activity against gram negative bacteria in yeast and in plants. Nahrung 42:128–130

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Sudhakara Reddy M, Pati PK et al (2020) Over-expression of Osmotin (OsmWS) gene of Withania somnifera in potato cultivar ‘Kufri Chipsona 1’ imparts resistance to Alternaria solani. Plant Cell Tissue Organ Cult 142:131–142

    Article  CAS  Google Scholar 

  • Kaya MD, Okçu G, Atak M et al (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    Article  CAS  Google Scholar 

  • Khan MS, Yu X, Kikuchi A et al (2009) Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnol 26:125–134

    Article  CAS  Google Scholar 

  • Khan A, Nasir IA, Tabassum B, Aaliya K, Tariq M, Rao AQ (2017) Expression studies of chitinase gene in transgenic potato against Alternaria solani. Plant Cell Tissue Organ Culture, 128:563–576

    Google Scholar 

  • Kim JK, Jang IC, Wu R, Zuo WN, Boston RS, Lee YH et al (2003) Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res 12:475–484

    Article  CAS  PubMed  Google Scholar 

  • Kim ST, Kim SG, Hwang DH, Kang SY, Kim HJ, Lee BH, Lee JJ, Kang KY (2004) Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569–3578

    Article  CAS  PubMed  Google Scholar 

  • Ko K, Norelli JL, Reynoird JP, Boresjza-Wysocka E, Brown SK, Aldwinckle S (2000) Effect of untranslated leader sequence of AMV RNA 4 and signal peptide of pathogenesis-related protein 1b on attacin gene expression, and resistance to fire blight in transgenic apple. Biotechnol Lett 22:373–381

    Article  CAS  Google Scholar 

  • Koenning SR, Overstreet C, Noling JW et al (1999) Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. J Nematol 31:587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Srivastava DK (2016) Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnol Lett 38(7):1049–1063

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Srivastava D (2020a) Molecular and biotechnological interventions for improving Brassicaceae crops for abiotic stress tolerance. In: The plant family Brassicaceae. Springer, Singapore, pp 437–450

    Chapter  Google Scholar 

  • Kumar P, Srivastava DK (2020b) Insight to biotechnological advances in the study of beneficial plant-microbe interaction with special reference to agrobacterium tumefaciens. In: Plant-microbe symbiosis. Springer, Cham, pp 287–302

    Chapter  Google Scholar 

  • Kumar P, Gambhir G, Gaur A, Thakur AK, Sharma KC, Srivastava DK (2018a) Development of transgenic broccoli with cryIAa gene for resistance against diamondback moth (Plutella xylostella). 3 Biotech 8(7):299

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Thakur AK, Srivastava DK (2018b) Genetic engineering approaches for abiotic stress tolerance in broccoli: recent progress. In: Akula R, Gill SS (eds) Metabolic adaptations in plants during abiotic stress. Taylor & Francis (CRC Press), Boca Raton, FL, pp 363–367

    Google Scholar 

  • Kumar P, Dhiman K, Srivastava DK (2018c) Morphogenic potential of different explants of broccoli (Brassica oleracea L. var. italica): important “nutrient rich” vegetable, using Thidiazuron. In: Ahmad N, Faisal M (eds) Thidiazuron: from urea derivative to plant growth regulator. Springer, Berlin, pp 373–392

    Google Scholar 

  • La Russa MF, Qi LS (2015) The new state of the art: Cas9 for gene activation and repression. Mol Cell Biol 35:3800–3809

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacerda AF, Del Sarto RP, Silva MS, de Vasconcelos EA, Coelho RR, dos Santos VO, Godoy CV, Seixas CD, da Silva MC, Grossi-de-Sa MF (2016) The recombinant pea defensin Drr230a is active against impacting soybean and cotton pathogenic fungi from the genera Fusarium, Colletotrichum and Phakopsora. Biotechnology 6:59

    Google Scholar 

  • LaRosa PC, Chen Z, Nelson DE, Singh NK, Hasegawa PM, Bressan RA (1992) Osmotin gene expression is post transcriptionally regulated. Plant Physiol 100:409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lay FT, Anderson MA (2005) Defensins - components of the innate immune system in plants. Curr Protein Pept Sci 6:85–101

    Article  CAS  PubMed  Google Scholar 

  • Le TTT, Williams B, Mundree S (2018) An osmotin from the resurrection plant Tripogon loliiformis (TlOsm) confers tolerance to multiple abiotic stresses in transgenic rice. Physiol Plant 162(1):13–34

    Article  CAS  PubMed  Google Scholar 

  • Lee HI, Raikel NV (1995) Prohevein is poorly processed but shows enhanced resistance to a chitin-binding fungus in transgenic tomato plants. Braz J Med Biol Res 28:743–750

    CAS  PubMed  Google Scholar 

  • Lee JH, Hubel A, Schoffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8:603–612. https://doi.org/10.1046/j.1365-313X.1995.8040603.x

    Article  CAS  PubMed  Google Scholar 

  • Lenka SK, Muthusamy SK, Chinnusamy V, Bansal KC (2018) Ectopic expression of rice PYL3 enhances cold and drought tolerance in Arabidopsis thaliana. Mol Biotechnol 60:350–361. https://doi.org/10.1007/s12033-018-0076-5

    Article  CAS  PubMed  Google Scholar 

  • Li T, Li H, Zhang Y-X, Liu J-Y (2011) Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res 39:2821–2833. https://doi.org/10.1093/nar/gkq1047

    Article  CAS  PubMed  Google Scholar 

  • Lian T, Huang Y, Xie X et al (2020) Rice SST variation shapes the rhizosphere bacterial community, conferring tolerance to salt stress through regulating soil metabolites. mSystems 5. https://doi.org/10.1128/mSystems.00721-20

  • Liang S, Xiong W, Yin C et al (2019) Overexpression of OsARD1 improves submergence, drought, and salt tolerances of seedling through the enhancement of ethylene synthesis in Rice. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.01088

  • Lin J-S, Lin C-C, Lin H-H et al (2012) Micro R 828 regulates lignin and H 2 O 2 accumulation in sweet potato on wounding. New Phytol 196:427–440

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Raghothama KG, Hasegawa PM, Bressan RA (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci U S A 91:1888–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JJ, Sturrock R, Ekramoddoullah AK (2010) The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29:419–436

    Article  CAS  PubMed  Google Scholar 

  • Liu D, He X, Li W, Chen C, Ge F (2012) Molecular cloning of a thaumatin-like protein gene from Pyrus pyrifolia and overexpression of this gene in tobacco increased resistance to pathogenic fungi. Plant Cell Tissue Organ Culture 111:29–39

    Article  CAS  Google Scholar 

  • Liu Y, Li D, Yan J et al (2019) MiR319 mediated salt tolerance by ethylene. Plant Biotechnol J 17:2370–2383. https://doi.org/10.1111/pbi.13154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697. https://doi.org/10.1104/pp.112.208298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Guo F, Xu Q, Cang J (2020) LncRNA improves cold resistance of winter wheat by interacting with miR398. Funct Plant Biol 47:544–557. https://doi.org/10.1071/FP19267

    Article  CAS  PubMed  Google Scholar 

  • M’Hamdi M, Chikh-rouhou H, Boughalleb N, Galarreta JR (2013) Ribosome inactivating protein of barley enhanced resistance to Rhizoctonia solani in transgenic potato cultivar ‘Desirée’ in greenhouse conditions. Biotechnol Agron Soc Environ 17(1):20–26

    Google Scholar 

  • Ma X, Zhang Q, Zhu Q et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Maddaloni M, Forlani F, Balmas V, Donini G, Stasse L, Corazza L et al (1997) Tolerance to the fungal pathogen Rhizoctonia solani AG4 of transgenic tobacco expressing the maize ribosome inactivating protein b-32. Transgenic Res 6:393–402

    Article  CAS  Google Scholar 

  • Maestri E, Klueva N, Perrotta C et al (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam R (2015) Consideration of combined stress: a crucial paradigm for improving multiple stress tolerance in plants. In: Combined stresses in plants. Springer, Cham, pp 1–25

    Chapter  Google Scholar 

  • Mahdavi F, Sariah M, Maziah M (2012) Expression of rice thaumatin-like protein gene in transgenic banana plants enhances resistance to Fusarium wilt. Appl Biochem Biotechnol 166:1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Manickavelu A, Nadarajan N, Ganesh SK et al (2006) Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul 50:121–138

    Article  CAS  Google Scholar 

  • Mao Y, Zhang H, Xu N et al (2013) Application of the CRISPR–Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melchers LS, Stuiver MH (2000) Novel genes for disease resistance breeding. Curr Opin Plant Biol 3:147–152

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Chen D, Ma X et al (2010) Mechanisms of microRNA-mediated auxin signaling inferred from the rice mutant osaxr. Plant Signal Behav 5:252–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao C, Xiao L, Hua K et al (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci 115:6058–6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan SB et al (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra RC, Kamthan SM, Kumar S, Ghosh S (2016) A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. Sci Rep 6:25340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462. https://doi.org/10.1146/annurev-arplant-042809-112116

    Article  CAS  PubMed  Google Scholar 

  • Müller KO (1958) Studies on phytoalexins I. The formation and the immunological significance of phytoalexin produced by Phaseolus vulgaris in response to infections with Sclerotinia fructicola and Phytophthora infestans. Aust J Biol Sci 11:275–300

    Article  Google Scholar 

  • Muoki RC, Paul A, Kumar S (2012) A shared response of thaumatin like protein, chitinase, and late embryogenesis abundant protein3 to environmental stresses in tea [Camellia sinensis (L.) O. Kuntze]. Funct Integr Genomics 12:565–571

    Article  CAS  PubMed  Google Scholar 

  • Nahar K, Hasanuzzaman M, Fujita M (2016) Roles of osmolytes in plant adaptation to drought and salinity. In: Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 37–68

    Chapter  Google Scholar 

  • Nakajima H, Muranaka T, Ishige F, Akutsu K, Oeda K (1997) Fungal and bacterial disease resistance in transgenic plants expressing human lysozyme. Plant Cell Rep 16:674–679

    Article  CAS  PubMed  Google Scholar 

  • Narasimhan ML, Damsz B, Coca MA, Ibeas JI, Yun DJ, Pardo JM, Hasegawa PM, Bressan RA (2001) A plant defense response effector induces microbial apoptosis. Mol Cell 8:921–930

    Article  CAS  PubMed  Google Scholar 

  • Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, Kadowaki T et al (2005) Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 17:171–180

    Article  CAS  PubMed  Google Scholar 

  • Nawaz G, Usman B, Zhao N et al (2020) CRISPR/Cas9 directed mutagenesis of OsGA20ox2 in high yielding basmati rice (Oryza sativa L.) line and comparative proteome profiling of unveiled changes triggered by mutations. Int J Mol Sci 21. https://doi.org/10.3390/ijms21176170

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11. https://doi.org/10.1093/aob/mcw191

    Article  PubMed  Google Scholar 

  • Neuhaus JM (1999) Plant chitinases (PR-3, PR-4, PR-8, PR-11). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, FL, pp 77–105

    Google Scholar 

  • Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, Hibi T (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic rice by constitutive expression of rice chitinase. Theor Appl Genet 99:383–390

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Luo T, Zhao H et al (2020) Identification of wheat DREB genes and functional characterization of TaDREB3 in response to abiotic stresses. Gene 740:144514. https://doi.org/10.1016/j.gene.2020.144514

    Article  CAS  PubMed  Google Scholar 

  • Norelli JL, Aldwinckle HS, Destéfano-Beltrán L, Jaynes JM (1994) Transgenic ‘Mailing 26’apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77:123–128

    Article  CAS  Google Scholar 

  • Ojola PO, Nyaboga EN, Njiru PN, Orinda G (2018) Overexpression of rice thaumatin-like protein (Ostlp) gene in transgenic cassava results in enhanced tolerance to Colletotrichum gloeosporioides f. sp. Manihotis. J Genet Eng Biotechnology 16(1):125–131

    Article  Google Scholar 

  • Ortiz R, Braun H-J, Crossa J et al (2008) Wheat genetic resources enhancement by the international maize and wheat improvement center (CIMMYT). Genet Resour Crop Evol 55:1095–1140. https://doi.org/10.1007/s10722-008-9372-4

    Article  Google Scholar 

  • Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723. https://doi.org/10.3389/fpls.2015.00723

    Article  PubMed  PubMed Central  Google Scholar 

  • Parmar N, Singh KH, Sharma P, Singh L, Kumar P, Nanjundan J, Khan YJ, Chauhan DK, Thakur AK (2017) Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech 7:239

    Article  PubMed  PubMed Central  Google Scholar 

  • Parray JA, Mir MY, Shameem N (2019) Plant genetic engineering and GM crops: merits and demerits. In: Sustainable agriculture: biotechniques in plant biology. Springer, Singapore, pp 155–229

    Chapter  Google Scholar 

  • Pellegrineschi A, Ribaut JM, Thretowan R et al (2003) Preliminary characterization of the DREB genes in transgenic wheat. In: Vasil IK (ed) Plant biotechnology 2002 and beyond: proceedings of the 10th IAPTC&B congress June 23–28, 2002 Orlando, Florida, U.S.A. Springer, Dordrecht, pp 183–187

    Chapter  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA et al (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci 88:3324–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piatek A, Ali Z, Baazim H et al (2015) RNA-guided transcriptional regulation in planta via synthetic dC as9-based transcription factors. Plant Biotechnol J 13:578–589

    Article  CAS  PubMed  Google Scholar 

  • Poonia AK, Mishra SK, Sirohi P et al (2020) Overexpression of wheat transcription factor (TaHsfA6b) provides thermotolerance in barley. Planta 252:53. https://doi.org/10.1007/s00425-020-03457-4

    Article  CAS  PubMed  Google Scholar 

  • Prasinos C, Krampis K, Samakovli D, Hatzopoulos P (2005) Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development. J Exp Bot 56:633–644

    Article  CAS  PubMed  Google Scholar 

  • Punja ZK (2004) Genetic engineering of plants to enhance resistance to fungal pathogens. In: Punja ZK (ed) Fungal disease resistance in plants. Food Products Press, New York, pp 207–258

    Google Scholar 

  • Puri M, Kaur I, Kanwar RK, Gupta RC, Chauhan A, Kanwar JR (2009) Ribosome inactivating proteins (RIPs) from Momordicacharantiafor antiviral therapy. Curr Mol Med 9:1080–1094

    Article  CAS  PubMed  Google Scholar 

  • Qadir M, Quillérou E, Nangia V et al (2014) Economics of salt-induced land degradation and restoration. In: Natural resources forum. Wiley Online Library, pp 282–295

    Google Scholar 

  • Qian Q, Huang L, Yi R, Wang SZ, Ding Y (2014) Enhanced resistance to blast fungus in rice (Oryza sativa L.) by expressing the ribosome-inactivating protein alpha-momorcharin. Plant Sci 217–218:1–7

    Article  PubMed  Google Scholar 

  • Raj PA, Dentino AR (2002) Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiol Lett 206:9–18

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54. https://doi.org/10.1016/j.jplph.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  • Ramu VS, Paramanantham A, Ramegowda V et al (2016) Transcriptome analysis of sunflower genotypes with contrasting oxidative stress tolerance reveals individual- and combined- biotic and abiotic stress tolerance mechanisms. PLoS One 11:e0157522. https://doi.org/10.1371/journal.pone.0157522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy B, Basu AK (2009) Abiotic stress tolerance in crop plants: breeding and biotechnology. New India Publishing, New Delhi

    Google Scholar 

  • Sagaram US, Pandurangi R, Kaur J, Smith TJ, Shah DM (2011) Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS One 6:e18550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakata T, Higashitani A (2008) Male sterility accompanied with abnormal anther development in plants–genes and environmental stresses with special reference to high temperature injury. Int J Plant Dev Biol 2:42–51

    Google Scholar 

  • Saxena SC, Kaur H, Verma P et al (2013) Osmoprotectants: potential for crop improvement under adverse conditions. In: Plant acclimation to environmental stress. Springer, New York, pp 197–232

    Chapter  Google Scholar 

  • Schöffl F, Rossol I, Angermüller S (1987) Regulation of the transcription of heat shock genes in nuclei from soybean (Glycine max) seedlings. Plant Cell Environ 10:113–119

    Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16:168–175

    Article  CAS  Google Scholar 

  • Scorza R, Callahan A, Dardick C et al (2013) Genetic engineering of plum pox virus resistance:‘HoneySweet’plum—from concept to product. Plant Cell Tissue Organ Culture 115:1–12

    Article  CAS  Google Scholar 

  • Secretariat UNIS for DR (2015) Global assessment report on disaster risk reduction 2015: making development sustainable: the future of disaster risk management. UNDRR, Geeneva

    Google Scholar 

  • Seo HH, Park S, Park S, Oh BJ, Back K, Han O, Kim J, Kim YS (2014) Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper. PLoS One 9(5):e97936

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrano C, Arce-Johnson P, Torres H et al (2000) Expression of the chicken lysozyme gene in potato enhances resistance to infection by Erwinia carotovora subsp. atroseptica. Am J Potato Res 77:191–199

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038. https://doi.org/10.1007/s00299-007-0416-6

    Article  CAS  PubMed  Google Scholar 

  • Sharma C, Srivastava DK (2013) Efficient Agrobacterium-mediated genetic transformation of tomato using petiole explant. Crop Improv 40(1):44–49

    Google Scholar 

  • Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H (2000) Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett 484:7–11

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Sharma KP, Gaur RK, Gupta VK (2011) Role of chitinase in plant defense. Asian J Biochem 6:29–37

    Article  CAS  Google Scholar 

  • Shen J, Xie K, Xiong L (2010) Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Gen Genomics 284:477–488. https://doi.org/10.1007/s00438-010-0581-0

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417. https://doi.org/10.1016/S1369-5266(03)00092-X

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA et al (1987) Characterization of osmotin: a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85:529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh NK, Kumar KRR, Kumar D, Shukla P, Kirti PB (2013) Characterization of a pathogen induced thaumatin-like protein gene AdTLP from Arachis diogoi, a wild peanut. PLoS One 8:e83963

    Article  PubMed  PubMed Central  Google Scholar 

  • Solgi T, Moradyar M, Zamani MR, Motallebi M (2015) Transformation of canola by Chit33 gene towards improving resistance to Sclerotinia sclerotiorum. Plant Prot Sci 51(1):1–5

    Article  Google Scholar 

  • Song T, Zhang Q, Wang H et al (2018) OsJMJ703, a rice histone demethylase gene, plays key roles in plant development and responds to drought stress. Plant Physiol Biochem 132:183–188. https://doi.org/10.1016/j.plaphy.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Harshavardhan VT, Govind G et al (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506:265–273

    Article  CAS  PubMed  Google Scholar 

  • Sripriya R, Parameswari C, Veluthambi K (2017) Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes. In Vitro Cell Dev Biol Plant 53:12–21

    Article  CAS  Google Scholar 

  • Srivastava DK, Kumar P, Sharma S, Gaur A, Gambhir G (2016) Genetic engineering for insect resistance in economically important vegetable crops. In: Ahmad N, Anis M (eds) Plant tissue culture: propagation, conservation and crop. Springer, Singapore, pp 343–378

    Chapter  Google Scholar 

  • Stark-Lorenzen P, Nelke B, Hanbler G, Muhlbach HP, Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep 16:668–673

    Article  CAS  PubMed  Google Scholar 

  • Stirpe F (2004) Ribosome-inactivating proteins. Toxicon 44:371–383

    Article  CAS  PubMed  Google Scholar 

  • Su HY, Chou HH, Chow TJ, Lee TM, Chang JS, Huang WL et al (2017) Improvement of outdoor culture efficiency of cyanobacteria by over-expression of stress tolerance genes and its implication as bio-refinery feedstock. Bioresour Technol 244:1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Sundaresha S, Kumar AM, Rohini S, Math SA, Keshamma E, Chandrashekar SC, Udayakumar M (2010) Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus flavus in transgenic groundnut over-expressing a tobacco β 1–3 glucanase. Eur J Plant Pathol 126(4):497–508

    Article  CAS  Google Scholar 

  • Taliansky M, Samarskaya V, Zavriev SK et al (2021) RNA-based Technologies for Engineering Plant Virus Resistance. Plan Theory 10:82

    CAS  Google Scholar 

  • Tang Y, Bao X, Zhi Y et al (2019) Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci 10:168. https://doi.org/10.3389/fpls.2019.00168

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Wang J, Bao X et al (2020) Genome-wide analysis of Jatropha curcas MADS-box gene family and functional characterization of the JcMADS40 gene in transgenic rice. BMC Genomics 21:325. https://doi.org/10.1186/s12864-020-6741-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavano ECD, Erpen L, Aluisi B, Harakava R, Lopes JRS, Vieira MLC, Piedade SMD, Mendes BMJ, Filho FDAM (2019) Sweet orange genetic transformation with the attacin A gene under the control of phloem-specific promoters and inoculation with Candidatus Liberibacter asiaticus. J Hortic Sci Biotechnol 94(2):210–219

    Article  CAS  Google Scholar 

  • Thakur P, Kumar S, Malik JA et al (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Thevissen K, Ferket KK, Francois IE, Cammue BP (2003) Interactions of antifungal plant defensins with fungal membrane components. Peptides 24:1705–1712

    Article  CAS  PubMed  Google Scholar 

  • Thomas A, Lallo CHO, Badrie N (2006) Microbiological evaluation of broiler carcasses, wash and rinse water from pluck shops (cottage poultry processors) in the county Nariva/Mayaro, Trinidad and Tobago, West Indies. Tropicultura 24:135

    Google Scholar 

  • Trudel J, Potvin C, Asselin A (1995) Secreted hen lysozyme in transgenic tobacco: recovery of bound enzyme and in vitro growth inhibition of plant pathogens. Plant Sci 106:55–62

    Article  CAS  Google Scholar 

  • Valente AP, de Paula VS, Almeida FC (2013) Revealing the properties of plant defensins through dynamics. Molecules 18:11311–11326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Rensburg L, Krüger GHJ (1994) Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L. J Plant Physiol 143:730–737. https://doi.org/10.1016/S0176-1617(11)81166-1

    Article  Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M et al (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S et al (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Vigers AJ, Roberts WK, Selitrennikoff CP (1991) A new family of plant antifungal proteins. Mol Plant-Microbe Interact 4:315–323

    Article  CAS  PubMed  Google Scholar 

  • Viktorova J, Klcova B, Rehorova K et al (2019) Recombinant expression of osmotin in barley improves stress resistance and food safety during adverse growing conditions. PLoS One 14. https://doi.org/10.1371/journal.pone.0212718

  • Vollenweider P, Günthardt-Goerg MS (2005) Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ Pollut 137:455–465

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Li F, Zhang X, Zhang Y, Hou Y, Zhang S, Wu Z (2011a) Purification and characterization of a CkTLP protein from Cynanchum komarovii seeds that confers antifungal activity. PLoS One 6:e16930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Shao B, Chang J, Rao P (2011b) Isolation and identification of a plant lysozyme from Momordica charantia L. Eur Food Res Technol 232:613–619

    Article  CAS  Google Scholar 

  • Wang S, Zhang H, Geng B et al (2018) 2-arachidonyl glycerol modulates astrocytic glutamine synthetase via p38 and ERK1/2 pathways. J Neuroinflammation 15:220

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016a) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Wani SH, Sah SK, Hossain MA et al (2016b) Transgenic approaches for abiotic stress tolerance in crop plants. In: Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Cham, pp 345–396

    Chapter  Google Scholar 

  • Weber RL, Wiebke-Strohm B, Bredemeier C, Margis-Pinheiro M, de Brito GG, Rechenmacher C, Bertagnolli PF, de Sa ME, Campos Mde A, de Amorim RM, Beneventi MA, Margis R, Grossi-de-Sa MF, Bodanese-Zanettini MH (2014) Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean. BMC Plant Biol 14:343

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei H, Movahedi A, Xu C, Sun W, Wang X, Li D, Zhuge Q (2020) Overexpression of PtDefensin enhances resistance to Septotis populiperda in transgenic poplar. Plant Sci 292:110379

    Article  CAS  PubMed  Google Scholar 

  • Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22:396–403

    Article  CAS  PubMed  Google Scholar 

  • Wohlkönig AH, Looze J, Y Wintjens R, and Uversky V N. (2010) Structural relationships in the lysozyme superfamily: significant evidence for glycoside hydrolase signature motifs. PLoS One 5:e15388

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu M, Liu R, Gao Y et al (2020) PheASR2, a novel stress-responsive transcription factor from moso bamboo (Phyllostachys edulis), enhances drought tolerance in transgenic rice via increased sensitivity to abscisic acid. Plant Physiol Biochem 154:184–194. https://doi.org/10.1016/j.plaphy.2020.06.014

    Article  CAS  PubMed  Google Scholar 

  • Xia K, Wang R, Ou X et al (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7:e30039. https://doi.org/10.1371/journal.pone.0030039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia K, Zeng X, Jiao Z et al (2018) Formation of protein disulfide bonds catalyzed by OsPDIL1;1 is mediated by microRNA5144-3p in rice. Plant Cell Physiol 59:331–342. https://doi.org/10.1093/pcp/pcx189

    Article  CAS  PubMed  Google Scholar 

  • Xing L, Di Z, Yang W et al (2017) Overexpression of ERF1-V from Haynaldia villosa can enhance the resistance of wheat to powdery mildew and increase the tolerance to salt and drought stresses. Front Plant Sci 8:1948. https://doi.org/10.3389/fpls.2017.01948

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu D, Duan X, Wang B et al (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Tang W, Wang C et al (2020) SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Front Plant Sci 11:785. https://doi.org/10.3389/fpls.2020.00785

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. https://doi.org/10.1146/annurev.arplant.57.032905.105444

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Qiao H, Zhang X et al (2017) Analysis of the grape (Vitis vinifera L.) thaumatin-like protein (TLP) gene family and demonstration that TLP29 contributes to disease resistance. Sci Rep 7:4269

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang C, Li D, Mao D et al (2013) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (O ryza sativa L.): Rice miR319 and cold response. Plant Cell Environ 36:2207–2218. https://doi.org/10.1111/pce.12130

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Ming X, Wang L et al (2002) Expression of a gene encoding trichosanthin in transgenic rice plants enhances resistance to fungus blast disease. Plant Cell Rep 20:992–998

    Article  CAS  Google Scholar 

  • Zakharchenkoa NS, Buryanova YI, Lebedevaa AA, Pigolevaa SV, Vetoshkinab DV, Loktyushovc EV, Chepurnovab MA, Kreslavskid VD, Kosobryukhov AA (2020) Physiological features of rapeseed plants expressing the gene for an antimicrobial peptide cecropin P1. Russ J Plant Physiol 60(3):411–419

    Article  Google Scholar 

  • Zeng Y, Wen J, Zhao W et al (2020) Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.01663

  • Zhang X, Zou Z, Gong P et al (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409

    Article  CAS  PubMed  Google Scholar 

  • Zhang LW, Song JB, Shu XX et al (2013a) miR395 is involved in detoxification of cadmium in Brassica napus. J Hazard Mater 250:204–211

    Article  PubMed  Google Scholar 

  • Zhang M, Zhuo Q, Tian Y, Piao J, Yang X (2013b) Long-term toxicity study on transgenic rice with Cry1Ac and sck genes. Food Chem Toxicol 63:76–83

    Article  PubMed  Google Scholar 

  • Zhang Z, Li J, Li F et al (2017) OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. Dev Cell 43:731–743.e5. https://doi.org/10.1016/j.devcel.2017.11.016

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang H, Srivastava AK et al (2018) Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol 176:2082–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Zheng J, Li QQ (2011) A novel plant in vitro assay system for pre-mRNA cleavage during 3′-end formation. Plant Physiol 157:1546–1554. https://doi.org/10.1104/pp.111.179465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wen H, Teotia S et al (2017) Suppression of microRNA159 impacts multiple agronomic traits in rice (Oryza sativa L.). BMC Plant Biol 17:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Yuan S, Zhou M et al (2019) Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnol J 17:233–251

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Kong H, Guo Y, Zou Z (2020) Light-harvesting chlorophyll a/b-binding protein-coding genes in jatropha and the comparison with castor, cassava and arabidopsis. PeerJ 8:e8465

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Li D, Li Z et al (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161:1375–1391. https://doi.org/10.1104/pp.112.208702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324. https://doi.org/10.1016/j.cell.2016.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Chen TH, Li PH (1996) Analysis of late-blight disease resistance and freezing tolerance in transgenic potato plants expressing sense and antisense genes for an osmotin-like protein. Planta 198:70–77

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Gao B, Tytgat J (2005) Phylogenetic distribution, functional epitopes and evolution of the CSab superfamily. Cell Mol Life Sci 62:2257–2269

    Article  CAS  PubMed  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou X, Jiang X, Xu L et al (2017) Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Plant Mol Biol 93:341–353

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sircaik, S., Dhiman, K., Gambhir, G., Kumar, P., Srivastava, D.K. (2021). Transgenic Implications for Biotic and Abiotic Stress Tolerance in Agricultural Crops. In: Kumar Srivastava, D., Kumar Thakur, A., Kumar, P. (eds) Agricultural Biotechnology: Latest Research and Trends . Springer, Singapore. https://doi.org/10.1007/978-981-16-2339-4_9

Download citation

Publish with us

Policies and ethics