Skip to main content

Insight to Biotechnological Advances in the Study of Beneficial Plant-Microbe Interaction with Special Reference to Agrobacterium tumefaciens

  • Chapter
  • First Online:
Plant Microbe Symbiosis

Abstract

Agrobacterium tumefaciens is the most scientifically investigated and proved cellular organism that has a natural capability to transfer genetic material between the kingdoms of life, from prokaryotes to eukaryotes. Recent advancement in biotechnological tools and techniques helps us to understand plant-microbe interactions because plants are closely associated with microorganisms that influence plants’ overall fitness. With the rapid decline of natural resources and continuous increase in the population of developing countries, there is an utmost need for new tools and technologies that supplement the agriculture system and provide novel opportunities for ensuring global food and nutritional security. Till now, Agrobacterium has been widely used as a vector to genetically transform the plants with agronomically important traits. Apart from the role of Agrobacterium tumefaciens in plant genetic engineering, it also served plant biologist to scientifically investigate and reveal basic biological processes such as regulation of gene expression, gene identification and mapping, cell-cell recognition, cell-to-cell transport mechanism, nuclear import, and recombination mechanism and to study mutagenesis within plant cells. In this chapter, we mainly emphasized on importance of a systems understanding of plant-microbe interactions, with a special reference to Agrobacterium tumefaciens—as natural plant genetic engineer, signal transduction and host immune response, quorum sensing and quenching, plant genes involved in susceptibility/resistance, factor affecting Agrobacterium plant transformation, recent advances/application in plant biology research, and omics approaches for better understanding plant-microbe interaction complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal G (2011) Studies on Agrobacterium-mediated insect resistance gene transfer studies in Himalayan poplar (Populus ciliata Wall.) and molecular analysis of regenerated plantlets. Ph.D. Thesis, Dr Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan

    Google Scholar 

  • Ahmad MZ, Hussain I, Muhammad A, Ali S, Ali GM, Roomi Z, Zia MA, Ijaz A (2012) Factor affecting Agrobacterium mediated transformation of rice chitinase gene in Solanum tuberosum L. Afr J Biotechnol 11:9716–9723

    CAS  Google Scholar 

  • Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang Y et al (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146:703–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L et al (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979

    Article  CAS  PubMed  Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. In: Martinez-Zapater JM, Salinas J (eds) Arabidopsis protocols. Humana, Totowa, pp 259–266

    Chapter  Google Scholar 

  • Boller T, Felix GA (2009) Renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Cardoza V, Stewart CN (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599–604

    Article  CAS  PubMed  Google Scholar 

  • Chen CP, Chou JC, Liu BR, Chang M, Lee HJ (2007) Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS Lett 581:1891–1897

    Article  CAS  PubMed  Google Scholar 

  • Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie PJ, Whitaker N, Gonzalez-Rivera C (2014) Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 1843:1578–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chugh A, Eudes F (2008) Cellular uptake of cell-penetrating peptides pVEC and transportan in plants. J Pept Sci 14:477–481

    Article  CAS  PubMed  Google Scholar 

  • Chugh A, Amundsen E, Eudes F (2009) Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Rep 28:801–810

    Article  CAS  PubMed  Google Scholar 

  • Chugh A, Eudes F, Shim YS (2010) Cell-penetrating peptides: nanocarrier for macromolecule delivery in living cells. IUBMB Life 62:183–193

    Article  CAS  PubMed  Google Scholar 

  • Chumakov MI, Rozhok NA, Velikov VA, Tyrnov VS, Volokhina IV (2006) In planta transformation of maize through inoculation of Agrobacterium into the silks. Genetika 42:1083–1088

    CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Curtis IS (2003) The noble radish: past, present and future. Trends Plant Sci 8:305–307

    Article  CAS  PubMed  Google Scholar 

  • Dessaux Y, Faure D (2018) Quorum sensing and quorum quenching in Agrobacterium: a “go/no go system”? Genes 9:210

    Article  PubMed Central  CAS  Google Scholar 

  • Ditt RF, Nester EW, Comai L (2001) Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci USA 98:10954–10959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldmann KA, Marks MD (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208:1–9

    Article  CAS  Google Scholar 

  • Gambhir G, Kumar P, Srivastava DK (2017) Effect of antibiotic sensitivity on different cultured tissues and its significance in genetic transformation of cabbage Brassica oleracea. Biosci Biotechnol Res Comm 10:652–661

    Article  Google Scholar 

  • Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150:1665–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    Article  CAS  PubMed  Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, Morris BA (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40:223–235

    Article  CAS  PubMed  Google Scholar 

  • Gohlke J, Deeken R (2014) Plant responses to Agrobacterium tumefaciens and crown gall development. Front Plant Sci 5:155

    Article  PubMed  PubMed Central  Google Scholar 

  • GĂłmez-GĂłmez L, Bauer Z, Boller T (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13:1155–1163

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo M, Zhang YL, Meng ZJ, Jiang J (2012) Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes. Gen Mol Res 11:661–671

    Article  CAS  Google Scholar 

  • Husaini AM (2010) Pre- and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants. Plant Cell Rep 29:97–110

    Article  CAS  PubMed  Google Scholar 

  • Hwang EE, Wang MB, Bravo JE, Banta LM (2015a) Unmasking host and microbial strategies in the Agrobacterium-plant defense tango. Front Plant Sci 6:200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang H, Gelvin SB, Lai E (2015b) Agrobacterium biology and its application to transgenic plant production. Front Plant Sci 6(1–3):265

    PubMed  PubMed Central  Google Scholar 

  • Imam J, Singh PK, Shukla P (2016) Plant microbe interactions in post genomic era: perspectives and applications. Front Microbiol 7:1488

    Article  PubMed  PubMed Central  Google Scholar 

  • ISAAA (2017) Global status of commercialized Biotech/GM crops: 2017. ISAAA Brief No. 53. ISAAA, Ithaca

    Google Scholar 

  • Ishaq SL (2017) Plant-microbial interactions in agriculture and the use of farming systems to improve diversity and productivity. AIMS Microbiol 3:335–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaraman D, Forshey KL, Grimsrud PA, Ane JM (2012) Leveraging proteomics to understand plant–microbe interactions. Front Plant Sci 3:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jube S, Borthakur D (2009) Development of an Agrobacterium-mediated transformation protocol for the tree-legume Leucaena leucocephala using immature zygotic embryos. Plant Cell Tissue Organ Cult 96:325–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Kavitah G, Taghipour F, Huyop F (2010) Investigation of factors in optimizing Agrobacterium mediated gene transfer in Citrullus lanatus cv round dragon. J Biol Sci 10:209–216

    Article  Google Scholar 

  • Keshamma E, Rohini S, Rao KS, Madhusudhan B, Kumar MU (2008) Tissue culture-independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cotton Sci 12:264–272

    CAS  Google Scholar 

  • Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Kossmann J (2012) Grand challenges in plant biotechnology. Front Plant Sci 3:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Srivastava DK (2015) High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Physiol Mol Biol Plants 21(2):279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Srivastava DK (2016) Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnol Lett 38(7):1049–1063

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Gambhir G, Gaur A, Srivastava DK (2015) Molecular analysis of genetic stability in in vitro regenerated plants of broccoli (Brassica oleracea L. var. italica). Curr Sci 109(8):1470–1475

    CAS  Google Scholar 

  • Kumar P, Gaur A, Srivastava DK (2017) Agrobacterium – mediated insect resistance gene (cry1Aa) transfer studies pertaining to antibiotic sensitivity on cultured tissues of broccoli (Brassica oleracea L. var. italica): an important vegetable crop. Int J Veg Sci 23:523–535

    Article  Google Scholar 

  • Kumar P, Gambhir G, Gaur A, Thakur AK, Sharma KC, Srivastava DK (2018a) Development of transgenic broccoli with cryIAa gene for resistance against diamondback moth (Plutella xylostella). 3 Biotech 8(7):299

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Thakur AK, Srivastava DK (2018b) Genetic engineering approaches for abiotic stress tolerance in broccoli: recent progress. In: Akula R, Gill SS (eds) Metabolic adaptations in plants during abiotic stress. Taylor & Francis (CRC), New York, pp 363–367

    Google Scholar 

  • Kumar P, Dhiman K, Srivastava DK (2018c) Morphogenic potential of different explants of broccoli (Brassica oleracea L. var. italica): important “nutrient rich” vegetable, using Thidiazuron. In: Ahmad N, Faisal M (eds) Thidiazuron: from urea derivative to plant growth regulator. Springer, Singapore, pp 373–392

    Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix B, Citovsky V (2013) The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol 57(6–8):467–481

    Article  CAS  PubMed  Google Scholar 

  • Mamontova EM, Velikov VA, Volokhina IV, Chumakov MI (2010) Agrobacterium-mediated in planta transformation of maize germ cells. Russ J Genet 46:501–504

    Article  CAS  Google Scholar 

  • Mine A, Sato M, Tsuda K (2014) Toward a systems understanding of plant–microbe interactions. Front Plant Sci 5(1–9):423

    PubMed  PubMed Central  Google Scholar 

  • Moshelion M, Altman A (2015) Current challenges and future perspectives of plant and agricultural biotechnology. Trends Biotechnol 33(6):337–342

    Article  CAS  PubMed  Google Scholar 

  • Nicaise V, Roux M, Zipfel C (2009) Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol 150:1638–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opabode J (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev 1:12–20

    Google Scholar 

  • Parmar N, Singh KH, Sharma P, Singh L, Kumar P, Nanjundan J, Khan YJ, Chauhan DK, Thakur AK (2017) Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech 7:239

    Article  PubMed  PubMed Central  Google Scholar 

  • Pathak RK, Baunthiyal M, Pandey D, Kumar A (2018) Augmentation of crop productivity through interventions of omics technologies in India: challenges and opportunities. 3 Biotech 8:454

    Article  PubMed  PubMed Central  Google Scholar 

  • Ping LX, Nogawa M, Nozue M, Makita M, Takeda M, Bao L, Kojima M (2003) In planta transformation of mulberry trees (Morus alba L.) by Agrobacterium tumefaciens. J Ins Biotechnol 72:177–184

    Google Scholar 

  • Prasad R, Gill SS, Tuteja N (2018) Crop improvement through microbial biotechnology. Elsevier, Amsterdam. ISBN 9780444639882. https://www.elsevier.com/books/crop-improvement-through-microbialbiotechnology/prasad/978-0-444-63987-5

    Google Scholar 

  • Puchta H (2000) Removing selectable marker genes: taking the shortcut. Trends Plant Sci 5:273–274

    Article  CAS  PubMed  Google Scholar 

  • Rao SK, Rohini VK (1999) Gene transfer into Indian cultivars of safflower (Carthamus tinctorius L.) using Agrobacterium tumefaciens. Plant Biotechnol 16:201–206

    Article  CAS  Google Scholar 

  • Rohini VK, Rao KS (2008) A novel in planta approach to gene transfer for legumes. In: Kirti PB (ed) Handbook of new technologies for genetic improvement of legumes. CRC, New York, pp 273–286

    Chapter  Google Scholar 

  • Schenk PM, McGrath KC, Lorito M (2008) Plant–microbe and plant-insect interactions meet common grounds. New Phytol 179:251–255

    Article  PubMed  Google Scholar 

  • Sharma C (2010) Studies on Agrobacterium- mediated insect resistance gene transfer in tomato (Lycopersicon esculentum Mill.). Ph.D. Thesis. Dr Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan

    Google Scholar 

  • Sharma P (2014) Studies on chitinase gene transfer in tomato (Solanum lycopersicum L.) and molecular analysis of transgenic plantlets. Ph.D. Thesis. Dr Y.S. Parmar University of Horticulture and Forestry, Nauni. In: Solan. H.P., India

    Google Scholar 

  • Sharma C, Srivastava DK, Aggarwal G (2011) Effect of cefotaxime with kanamycin on regeneration efficiency and Agrobacterium growth in tomato plants. J Plant Sci Res 27:227–230

    Google Scholar 

  • Shaunak I, Kumar P, Gaur A, Sharma S, Srivastava DK (2018) Agrobacterium-mediated gene transfer using binary vector in lettuce (Lactuca sativa L.). Agric Res J 55(3):443–450

    Article  Google Scholar 

  • Shukla M, Al-Busaidi KT, Trivedi M, Tiwari RK (2018) Status of research, regulations and challenges for genetically modified crops in India. GM Crops Food 04:1–16

    Google Scholar 

  • Singh D, Raina TK, Kumar A, Singh J, Prasad R (2019) Plant microbiome: a reservoir of novel genes and metabolites. Plant Gene 18:100177. https://doi.org/10.1016/j.plgene.2019.100177

    Article  CAS  Google Scholar 

  • Slater A, Scott NW, Fowler MR (2008) The genetic manipulation of herbicide tolerance. In: Plant biotechnology: the genetic manipulation of plants, 2nd edn. Oxford University Press, Oxford, pp 54–74

    Google Scholar 

  • Sood P, Bhattacharya A, Sood A (2011) Problems and possibilities of monocot transformation. Biol Plant 55:1–15

    Article  CAS  Google Scholar 

  • Spoel SH, Dong XN (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    Article  CAS  PubMed  Google Scholar 

  • Srivastava DK, Kumar P, Sharma S, Gaur A, Gambhir G (2016) Genetic engineering for insect resistance in economically important vegetable crops. In: Ahmad N, Anis M (eds) Plant tissue culture: propagation, conservation and crop. Springer, New York, pp 343–378

    Chapter  Google Scholar 

  • Subramoni S, Nathoo B, Klimov E, Yuan Z (2014) Agrobacterium tumefaciens responses to plant-derived signaling molecules. Front Plant Sci 5(1–12):322

    PubMed  PubMed Central  Google Scholar 

  • Taj G, Giri P, Tasleem M, Kumar A (2014) MAPK signaling cascades and transcriptional reprogramming in plant-pathogen interactions. In: Gaur RK, Sharma P (eds) Approaches to plant stress and their management. Springer, Berlin, pp 297–316

    Chapter  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469

    Article  CAS  PubMed  Google Scholar 

  • Torto-Alalibo T, Collmer CW, Gwinn-Giglio M (2009) The plant-associated microbe gene ontology (PAMGO) consortium: community development of new gene ontology terms describing biological processes involved in microbe-host interactions. BMC Microbiol 9(Suppl 1):S1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuteja N, Verma S, Sahoo RK, Raveendar S, Reddy INBL (2012) Recent advances in development of marker-free transgenic plants: regulation and biosafety concern. J Biosci 37:167–197

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Citovsky V (eds) (2008) Agrobacterium, from biology to biotechnology. Springer, New York

    Google Scholar 

  • Van Emon JM (2016) The omics revolution in agricultural research. J Agric Food Chem 64(1):36–44

    Article  CAS  PubMed  Google Scholar 

  • Verma H, Kumar P, Gambhir G, Srivastava DK (2014) Agrobacterium-mediated transformation of broccoli. Crop Improv 41(2):139–147

    Google Scholar 

  • Wang WC, Menon G, Hansen G (2003) Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Rep 22:274–281

    Article  PubMed  CAS  Google Scholar 

  • Willig CJ, Duan K, Zhang ZJ (2018) Transcriptome profiling of plant genes in response to Agrobacterium tumefaciens-mediated transformation. Curr Top Microbiol Immunol 418:319–348. https://doi.org/10.1007/82_2018_115

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Williams M (2014) A really useful pathogen, Agrobacterium tumefaciens. Plant Cell. https://doi.org/10.1105/tpc.112.tt1012

  • Zhang RG, Pappas KM, Brace JL, Miller PC, Oulmassov T, Molyneaux JM, Anderson JC, Bashkin JK, Winans SC, Joachimiak A (2002) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971–974 (Erratum. Nature 476:240)

    Google Scholar 

  • Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T et al (2013) Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog 9:e1003370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y et al (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132:494–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziemienowicz A (2014) Agrobacterium-mediated plant transformation: factors, applications and recent advances. Biocatal Agric Biotechnol 3(4):95–102

    Article  Google Scholar 

  • Ziemienowicz A, Shim YS, Matsuoka A, Eudes F, Kovalchuk I (2012) A novel method of transgene delivery into triticale plants using the Agrobacterium transferred DNA-derived nano-complex. Plant Physiol 158:1503–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G et al (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T et al (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The senior author (PK) thankfully acknowledges the award of National Postdoctoral Fellowship, Science and Engineering Research Board, Department of Science and Technology, Government of India, New Delhi, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Srivastava, D.K. (2020). Insight to Biotechnological Advances in the Study of Beneficial Plant-Microbe Interaction with Special Reference to Agrobacterium tumefaciens . In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Symbiosis. Springer, Cham. https://doi.org/10.1007/978-3-030-36248-5_15

Download citation

Publish with us

Policies and ethics