Skip to main content
Log in

Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop

  • REVIEW
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

With the advent of molecular biotechnology, plant genetic engineering techniques have opened an avenue for the genetic improvement of important vegetable crops. Vegetable crop productivity and quality are seriously affected by various biotic and abiotic stresses which destabilize rural economies in many countries. Moreover, absence of proper post-harvest storage and processing facilities leads to qualitative and quantitative losses. In the past four decades, conventional breeding has significantly contributed to the improvement of vegetable yields, quality, post-harvest life, and resistance to biotic and abiotic stresses. However, there are many constraints in conventional breeding, which can only be overcome by advancements made in modern biology. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop, of the family Brassicaceae; however, various biotic and abiotic stresses cause enormous crop yield losses during the commercial cultivation of broccoli. Thus, genetic engineering can be used as a tool to add specific characteristics to existing cultivars. However, a pre-requisite for transferring genes into plants is the availability of efficient regeneration and transformation techniques. Recent advances in plant genetic engineering provide an opportunity to improve broccoli in many aspects. The goal of this review is to summarize genetic transformation studies on broccoli to draw the attention of researchers and scientists for its further genetic advancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-wahhab MA, Aly SE (2003) Antioxidants and radical scavenging properties of vegetable extracts in rats fed aflatoxin-contaminated diet. J Agric Food Chem 51:2409–2414

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal G (2011) Studies on Agrobacterium-mediated insect resistance gene transfer studies in Himalayan poplar (Populus ciliata Wall.) and molecular analysis of regenerated plantlets. Ph.D. Thesis, Dr Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (H.P.), India

  • Aggarwal G, Gaur A, Srivastava DK (2015) Establishment of high frequency shoot regeneration system in Himalayan poplar (Populus ciliata Wall. Ex Royle) from petiole explants using Thidiazuron cytokinin as plant growth regulator. J For Res. doi:10.1007/11676-015-0048-6

    Google Scholar 

  • Ahmad MZ, Hussain I, Muhammad A, Ali S, Ali GM, Roomi Z, Zia MA, Ijaz A (2012) Factor affecting Agrobacterium-mediated transformation of rice chitinase gene in Solanum tuberosum L. Afr J Biotechnol 11:9716–9723

    CAS  Google Scholar 

  • Awasthi M (2003) Agrobacterium- mediated insect resistance gene (cry1Ab) transfer studies in cauliflower (Brassica oleracea L. var. botrytis). Ph. D. Thesis. Dr Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan (H.P.), India

  • Awasthi M, Srivastava DK (2013) Pyramiding of Bt-genes (cry1Ab and cry1Aa) in cauliflower (Brassica oleracea L. var. botrytis) for insect resistance using an Agrobacterium-mediated gene transfer technique. In: Proceedings of National symposium on Plant tissue culture and biotechnology for food and nutritional security, Abstract, p 72

  • Bai YY, Mao HZ, Cao XL, Tang T, Wu D, Chen DD, Li WG, Fu WJ, You CB, Ding Y (1992) Transgenic cabbage plants with insect tolerance. Curr Plant Sci Biotechnol Agric 15:156–159

    Article  Google Scholar 

  • Bardhan SK, Sharma C, Srivastava DK (2013) Genetic transformation studies in agronomical important plant Solanum melongena L. through different seedling explants. Crop Improv 40:156–162

    Google Scholar 

  • Beachy RN, Loesch-Fies S, Turner NE (1990) Coat protein-mediated resistance against viral infection. Annu Rev Phytopathol 28:451–474

    Article  CAS  Google Scholar 

  • Bhalla PL, Singh MB (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 3:181–189

    Article  CAS  PubMed  Google Scholar 

  • Bhalla PL, Smith N (1998a) Agrobacterium tumefaciens-mediated transformation of cauliflower Brassica oleracea var. botrytis. Mol Breed 4:531–541

    Article  CAS  Google Scholar 

  • Bhalla PL, Smith NA (1998b) Comparison of shoot regeneration potential from seedling explants of Australian cauliflower (Brassica oleracea var. botrytis) varieties. Aust J Agric Res 49:1261–1266

    Article  Google Scholar 

  • Bottrell DG, Aguda RM, Gould FL, Theunis W, Demayo CG, Magalit VF (1992) Potential strategies for prolonging the usefulness of Bacillus thuringiensis in engineered rice. Korean J Appl Entomol 31:247–255

    Google Scholar 

  • Cao J, Earle ED (2002) Transgene expression in broccoli (Brassica oleracea var. italica) clones propagated in vitro via leaf explants. Plant Cell Rep 21:789–796

    Google Scholar 

  • Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED (1999) Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Mol Breed 5(2):131–141

    Article  CAS  Google Scholar 

  • Cardoza V, Stewart CN (2004) Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev Biol-Plant 40:542–551

    Article  CAS  Google Scholar 

  • Chakrabarty R, Viswakarma N, Bhat SR, Kirti PB, Singh BD, Chopra VL (2002) Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. J Biosci 27(25):495–502

    Article  CAS  PubMed  Google Scholar 

  • Chang YM, Liou PC, Hsiao CH (1996) Anther culture of cabbage (Brassica oleracea L. var. capitata) and broccoli (B. oleracea L. var. italica). I. Varieties, developmental stages and cultural medium relation with regeneration. J Agric Res China 45:35–46

    Google Scholar 

  • Chen LO, Hwang JY, Wang YH, Chen YT, Shaw J (2004) Ethylene insensitive and post-harvest yellowing retardation in mutant ethylene response sensor gene transformed broccoli. Mol Breed 14:199–213

    Article  Google Scholar 

  • Chen LO, Chin HL, Kelkarc SM, Chang YM, Shawa JF (2007) Transgenic broccoli (Brassica oleracea L. var. italica) with antisense chlorophyllase (BOCLH1) delays post harvest yellowing. Plant Sci 174:25–31

    Article  CAS  Google Scholar 

  • Cheng ZM, Schnurr JA, Kapaun JA (1998) Timentin as an alternative antibiotic for suppression of Agrobacterium tumefaciens in genetic transformation. Plant Cell Rep 17:646–649

    Article  CAS  Google Scholar 

  • Cho HS, Lee YH, Suh SC, Kin DH, Kin HI (1994) Transformation of gus gene into Chinese cabbage (Brassica compestris var. pekinensis) by particle bombardment. J Agric Sci Technol 36:181–186

    Google Scholar 

  • Cho HS, Cao J, Ren JP, Earle ED (2001) Control of lepidopteran insect pests in transgenic Chinese cabbage (Brassica compestris ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis cryIAc gene. Plant Cell Rep 20:1–7

    Article  CAS  Google Scholar 

  • Christey MC, Earle ED (1991) Regeneration of Brassica oleracea from peduncle explants. HortSci 26:1069–1072

    Google Scholar 

  • Christey MC, Sinclair BK, Braun RH, Wyke L (1997a) Regeneration of transgenic vegetable brassicas (B. oleracea and B. campestris) via Ri-mediated transformation. Plant Cell Rep 16:587–593

    Article  CAS  Google Scholar 

  • Christey MC, Braun RH, Reader JK (1997a) Field testing genetically modified vegetable brassicas. Crop Info Confidential Report No 437

  • Cogan N, Harvey E, Robinson H, Lynn J, Pin D, Newbury HJ, Puddephat I (2001) The effects of anther culture and plant genetic background on Agrobacterium rhizogenes—mediated transformation of commercial cultivars and derived double haploid Brassica oleracea. Plant Cell Rep 20:755–762

    Article  CAS  Google Scholar 

  • Cooper B, Lapidot M, Heick JA, Beachy RN (1995) A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analogue increases susceptibility. Virology 206:307–313

    Article  CAS  PubMed  Google Scholar 

  • De Block M, Herrera-Estrella L, Van-Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. Eur Mol Biol Org J 3:1681–1689

    Google Scholar 

  • Deng-Xia Y, Lei C, Yu-Mei L, Mu Z, Yang-Yong Z, Zhi-Yuan F, Li-Mei Y (2011) Transformation of cabbage (Brassica oleracea L. var. capitata) with Bt cry1Ba3 gene for control of diamondback moth. Agric Sci China 10:1693–1700

    Article  CAS  Google Scholar 

  • Dhiman K, Verma S, Srivastava DK (2014) Plant regeneration, genetic transformation and expression of gus gene in broccoli. Veg Sci 41:129–134

    Google Scholar 

  • Ding LC, Hu CY, Yeh KW, Wang PJ (1998) Development of insect resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep 17:854–860

    Article  CAS  Google Scholar 

  • Dixit S, Srivastava DK (1999) Kanamycin sensitivity in cultured tissues of cauliflower. J Appl Hortic 1:94–96

    Google Scholar 

  • Dunwell JM (2000) Transgenic approaches to crop improvement. J Exper Bot 51:487–496

    Article  CAS  Google Scholar 

  • Eimert K, Siegemund F (1992) Transformation of cauliflower (Brassica oleracea L. var. botrytis)—an experimental survey. Plant Mol Biol 19:485–490

    Article  CAS  PubMed  Google Scholar 

  • Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 99:10367–10372

    Article  Google Scholar 

  • Farzinebrahimi R, Taha RM, Fadainasab M, Mokhtar S (2012) In vitro plant regeneration, antioxidant and antibacterial studies on broccoli, Brassica oleracea var. italica. Pak J Bot 44:2117–2122

    Google Scholar 

  • Finley JW (2003) Reduction of cancer risk by consumption of selenium-enriched plants: enrichment of broccoli with selenium increases the anticarcinogenic properties of broccoli. J Med Food 6:19–26

    Article  CAS  PubMed  Google Scholar 

  • Finley JW, Ip C, Lisk DJ, Davis CD, Hintze KG, Whanger PD (2001) Cancer-protective properties of high-selenium broccoli. J Agric Food Chem 49:2679–2683

    Article  CAS  PubMed  Google Scholar 

  • Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SH, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Insect tolerant transgenic tomato plants. Bio/Technology 5:807–813

    Article  CAS  Google Scholar 

  • Fl Perlak, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Biotechnology 8:939–943

    Article  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PS, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffman NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fromm M, Armstrong C, Blasingame A, Brown S, Duncan D, Deboer D, Hairston B, Howe A, McCaul S, Neher M, Pajeau M, Parker G, Pershing J, Petersen B, Santino C, Sanders P, Sato S, Sims S, Thorton T (1994) Production of insect resistant corn. J BioI Chern Suppl 18A:77

    Google Scholar 

  • Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K (1993) Insect resistant rice generated by introduction of a modified delta-endotoxin gene of Bacillus thuringiensis. Bio/Technology 11:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Gambhir G (2013) Studies on Agrobacterium-mediated insect resistance gene transfer in cabbage (Brassica oleracea L. var. capitata) and molecular analysis of regenerated plantlets. Ph. D. Thesis. Dr Y.S. Parmar University of Horticulture and Forestry, Nauni. Solan (H.P.), India

  • Gapper NE, Coupe SA, McKenzie MJ, Christey MC, Lill RE, Jameson PE (2002a) Characterization of broccoli (Brassica oleracea var. italica) plants harbouring a harvest-specific antisense ACC oxidase gene. Microb Molec 26–29 November, Christchurch, p 57

  • Gapper NE, McKenzie MJ, Christey MC, Braun RH, Coupe SA, Lill RE, Jameson PE (2002b) Agrobacterium tumefaciens-mediated transformation to alter ethylene and cytokinin biosynthesis in broccoli. Plant Cell, Tissue Organ Cult 70:41–50

    Article  CAS  Google Scholar 

  • Gasser CS, Fraley RT (1989) Genetically engineered plants for crop improvement. Science 244:1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Gatehouse AMR, Gatehous JA, Boulter D (1980) Isolation and characterization of trypsin inhibitors from cowpea (Vigna unguiculata). Phytochemistry 19:751–756

    Article  CAS  Google Scholar 

  • Gaur (2015) Studies on Agrobacterium-mediated insect resistance gene [cry1A(a)] transfer in cauliflower (Brassica oleracea L. var. botrytis). Ph.D. Thesis, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (H.P.), India

  • Georghiou GP, Tajeda LA (1991) The occurrence of resistance to pesticides in arthropods. Food and Agriculture Organization, Rome

    Google Scholar 

  • Goderis IJWM, DeBolle MFC, Francois IEJA, Wouters PFJ, Broekaert WF, Cammue BPA (2002) A set of modular plant transformation vectors allowing flexible insertion of up to six expression units. Plant Mol Biol 50:17–27

    Article  CAS  PubMed  Google Scholar 

  • Henzi MX, Christey MC, McNeil DL, Davies KM (1999) Agrobacterium rhizogenes-mediated transformation of broccoli with an antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene. Plant Sci 143(1):53–62

    Article  Google Scholar 

  • Henzi MX, Christey MC, McNeil DL (2000) Factors that influence Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica). Plant Cell Rep 19:994–999

    Article  CAS  Google Scholar 

  • Herrera-Estrella L, Depicker A, Van-Montagu M, Schell J (1983) Expression of chimeric genes transferred into plant cell using a Ti-plasmid vector. Nature 303:209–213

    Article  CAS  Google Scholar 

  • Higgins JD, Newbury HJ, Barbara DJ, Muthumeenakshi S, Puddephat IJ (2006) Production of marker-free genetically engineered broccoli with sense and antisense ACC synthase 1 and ACC oxidase 1 and 2 to extend shelf life. Mol Breed 17:7–20

    Article  CAS  Google Scholar 

  • Hiifte H, Whiteley HR (1991) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Llyod A, Hoffman N (1984) Inheritance of functional foreign genes in plants. Science 223:496–498

    Article  CAS  PubMed  Google Scholar 

  • Hosoki T, Kigo T, Shiraishi K (1989) Transformation and regeneration of broccoli (Brassica oleracea var. italica) mediated by Agrobacterium rhizogenes. J Jpn Soc Hortic Sci 60:71–75

    Article  Google Scholar 

  • Houseman JG, Downe AER, Philogene BJR (1989) Partial characterization of proteinase activity in the larval mid gut of European corn borer Ostrinia nubilalis Hubner (Lepidoptera : Pyralidae). Canad J Zool 67:864–868

    Article  CAS  Google Scholar 

  • Hua WF, Chen CH, Yuan LG, Min WL (2009) Transformation of cabbage (Brassica oleracea L.) using activation tagging plasmid. Acta Botan Bor-Occid Sin 29:905–909

    Google Scholar 

  • Huang K, Jiashu C, Xiaolin Y, Wanzhi Y, Gang L, Xiang X (2005) Plant male sterility induced by antigene CYP86MF in Brassica oleracea L. var. italica. Agric Sci China 4:806–810

    Google Scholar 

  • Huang K, Qiuyun W, Juncleng L, Zheng J (2011) Optimization of plant regeneration from broccoli. Afr J Biotechnol 10:4081–4085

    CAS  Google Scholar 

  • Husaini AM (2010) Pre- and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants. Plant Cell Rep 29:97–110

    Article  CAS  PubMed  Google Scholar 

  • Irwin JA, Bird N, Richardson A, Sparrow P, Townsend T, Dean C, Coupland G, Dale P. (2002) Control of the transition from vegetative to flowering mode in horticultural Brassicas. In: McVetty PBE, Schlosser K, Quiros CF (eds) Abstracts of the 13th Crucifer Genetics Workshop, California, p 108

  • Jain SM (1993) Recent advances in plant genetic engineering. Curr Sci 64:714–724

    Google Scholar 

  • Jin RG, Liu YB, Tabashnik BE, Borthakur D (2000) Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by Agrobacterium tumefaciens—mediated transformation. In Vitro Cell Dev Biol Plant 36(4):231–237

    Article  CAS  Google Scholar 

  • Johnson R, Narvaez J, An G, Ryan C (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larve. Proc Natl Acad Sci USA 86:9871–9875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur ND, Vyvadilova M, Klima M, Bechyne M (2006) A simple procedure for mesophyll protoplast culture and plant regeneration in Brassica oleracea L. and Brassica napus L. Czech J Genet Plant Breed 3:103–110

    Google Scholar 

  • Keck AS, Qiao Q, Jeffery EH (2003) Food matrix effects on bioactivity of broccoli-derived sulforaphane in liver and colon of f344 rats. J Agric Food Chem 51:3320–3327

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Botella JR (2002) Callus induction and plant regeneration from broccoli (Brassica oleracea var. italica) for transformation. J Plant Biol 45:177–181

    Article  Google Scholar 

  • Kumar P, Srivastava DK (2015a) Effect of potent cytokinin thidiazuron (TDZ) on in vitro morphogenic potential of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Indian J Plant Physiol 20:317–323

    Article  Google Scholar 

  • Kumar P, Srivastava DK (2015b) High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Physiol Mol Biol Plants 21:279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Srivastava DK (2015c) Biotechnological application in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop: a review. Biotechnol. doi:10.1007/s10529-015-2031-x

    Google Scholar 

  • Kumar P, Gaur A, Srivastava DK (2015) Morphogenic response of leaf and petiole explants of broccoli using thidiazuron. J Crop Improv 29:432–446

    Article  CAS  Google Scholar 

  • Kumar P, Gambhir G, Gaur A, Srivastava DK (2016) Molecular analysis of genetic stability in tissue culture raised plants of broccoli (Brassica oleracea L. var. italica). Curr Sci 109:1470–1475

    Google Scholar 

  • Li G, Zhong X, Li X (1999) Transformation of Brassica oleracea var. italica cotyledon and hypocotyl protoplasts with Agrobacterium tumefaciens. Acta Agric Shanghai 15:28–32

    Google Scholar 

  • Liang C, Brookhart G, Feng GH, Reeck GR, Kramer KJ (1991) Inhibition of digestive proteinases of stored grain coleopteran by oryzacystatin, a cystein proteinase inhibitor from rice seed. FEBS Lett 278:139–142

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Kriseleit D, Ganal MW (1998) Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Rep 17:843–847

    Article  CAS  Google Scholar 

  • Lingling L, Jianjun L, Ming S, Liyun L, Bihao C (2005) Study on transformation of cowpea trypsin inhibitor gene into cauliflower (Brassica oleracea L. var. botrytis). Afr J Biotechnol 4:45–49

    Google Scholar 

  • Lomonossof GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33:323–343

    Article  Google Scholar 

  • Mathews H, Litz RE (1990) Kanamycin sensitivity of mango somatic embryos. HortSci 25:965–966

    CAS  Google Scholar 

  • Metz TD, Dixit TR, Earle ED (1995a) Agrobacterium tumefaciens mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep 15:287–292

    CAS  PubMed  Google Scholar 

  • Metz TD, Roush RT, Tang JD, Shelton AM, Earle ED (1995b) Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies. Mol Breed 4:309–317

    Article  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  CAS  PubMed  Google Scholar 

  • Mora Avieles MA, Earle ED (2004) Expression of pathogenesis related gene in transgenic broccoli and canola plants expressing Trichoderma harzianum endochitinase gene. Revis Chap Seric Hortic 10:141–146

    Google Scholar 

  • Mora AA, Earle ED (1999) Transformation of broccoli with Trichoderma harzianum endochitinase gene. Crucif Newsl 21:57–58

    Google Scholar 

  • Narberhaus F (2010) Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA Biol 7:84–89

    Article  CAS  PubMed  Google Scholar 

  • Naureby B, Billing K, Wyndaele R (1997) Influence of the antibiotic timetin on plant regeneration compared to carbencillin & cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciencs. Plant Sci 123:169–177

    Article  Google Scholar 

  • Omar SA, Fu QT, Chen MS, Wang GJ, Song SQ, Elsheery NI, Xu ZF (2011) Identification and expression analysis of two small heat shock protein cDNAs from developing seeds of biodiesel feedstock plant Jatropha curcas. Plant Sci 181:632–637

    Article  CAS  PubMed  Google Scholar 

  • Park YD, Kim HS, Kang BK (2000) The effects of plant growth regulators, AgNO3, dark treatment, and antibiotics on shoot induction from cotyledon and hypocotyl of Chinese cabbage. HortSci 35:422–450

    Google Scholar 

  • Paul A, Sharma SR, Sresty TVS, Devi S, Bala S, Kumar PS, Pardha SP, Frutos R, Altosaar I, Kumar PA (2005) Transgenic cabbage (Brassica oleracea var. capitata) resistant to diamondback moth (Plutella xylostella). Indian J Biotechnol 4:72–77

    CAS  Google Scholar 

  • Puddephat IJ, Thompson N, Robinson HT, Sandhu P, Henderson J (1994) Biolistic transformation of broccoli for transient expression of β-glucuronidase gene. J Hortic Sci Biotechnol 74(6):714–720

    Article  Google Scholar 

  • Puddephat IJ, Riggs TJ, Fenning TM (1996) Transformation of Brassica oleracea L.: a critical review. Mol Breed 2(3):185–210

    Article  Google Scholar 

  • Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DAC (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea L. var. italica upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol Breed 7:229–242

    Article  CAS  Google Scholar 

  • Qin Y, Li HL, Guo YD (2006) High frequency embryogenesis, regeneration of broccoli (Brassica oleracea var. italica) and analysis of genetic stability by RAPD. Sci Hortic 111:203–208

    Article  CAS  Google Scholar 

  • Radchuk VV, Ryschka U, Schumann G, Klock E (2002) Genetic transformation of cauliflower (Brassica oleracea var. botrytis) by direct DNA uptake into mesophyll protoplasts. Physiol Plant 114:429–438

    Article  CAS  PubMed  Google Scholar 

  • Ranjekar PK, Patnakar A, Gupta V, Bhatnagar R, Bentur J, Kumar PA (2003) Genetic engineering of crop plants for insect resistance. Curr Sci 84:412–422

    Google Scholar 

  • Ravanfar SA, Aziz MA (2014) Shoot tip regeneration and optimization of Agrobacterium tumefaciens-mediated transformation of Broccoli (Brassica oleracea var. italica) cv. Green Marvel. Plant Biotechnol, 9:27–36

    Article  Google Scholar 

  • Ravanfar SA, Aziz MA, Kadir MA, Rashid AA, Sirchi MHT (2009) Plant regeneration of Brassica oleracea var. italica (broccoli) cv. Green marvel was affected by plant growth regulators. Afr J Biotechnol 8:2523–2528

    CAS  Google Scholar 

  • Ravanfar SA, Aziz MA, Kadir MA, Rashid AA, Haddadi F (2011) In vitro shoot regeneration and acclimatization of Brassica oleracea var. italica cv. Green marvel. Afr J Biotechnol 10:5614–5619

    CAS  Google Scholar 

  • Ravanfar SA, Aziz MA, Rashid AA, Shahida S (2014) In vitro adventitious shoot regeneration from cotyledon explant of Brassica oleracea subsp. italica and Brassica oleracia subsp. capitata using TDZ and NAA. Pak J Bot 46:329–335

    CAS  Google Scholar 

  • Robertson D, Earle ED (1986) Plant regeneration from leaf protoplasts of Brassica oleracea L. var. italica. Plant Cell Rep 5:61–64

    Article  CAS  PubMed  Google Scholar 

  • Sharma C (2010) Studies on Agrobacterium- mediated insect resistance gene transfer in tomato (Lycopersicon esculentum Mill.). Ph.D. Thesis. Dr Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (H.P.), India

  • Sharma P (2014) Studies on chitinase gene transfer in tomato (Solanum lycopersicum L.) and molecular analysis of transgenic plantlets. Ph.D. Thesis. Dr Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (H.P.), India

  • Sharma C, Srivastava DK (2013) Efficient Agrobacterium-mediated genetic transformation of tomato using petiole explants. Crop Improv 40:44–49

    Google Scholar 

  • Sharma P, Srivastava DK (2014a) In vitro plant regeneration from cotyledon and hypocotyls tissues of tomato (Solanum lycopersicum L. cv. Solan Vajr). Vegetos 27:151–160

    Google Scholar 

  • Sharma P, Srivastava DK (2014b) Effect of hygromycin on tomato cultures and its application in Agrobacterium—mediated tomato transformation. Crop Improv 41:43–49

    Google Scholar 

  • Sharma C, Srivastava DK, Aggarwal G (2011) Effect of cefotaxime with kanamycin on regeneration efficiency and Agrobacterium growth in tomato plants. J Plant Sci Res 27:227–230

    Google Scholar 

  • Siemonsma JS, Piluek K (eds) (1993) Plant resources of Southeast Asia No 8: vegetables. Pudoc Scientific Publishers, Wageningen

    Google Scholar 

  • Singh Z, Sansavini S (1998) Genetic transformation and fruit crop improvement. Plant Breed Rev 16:87–134

    Google Scholar 

  • Song Z, Jiang FW, Xiang ZC, Tang WY (2000) Effect of antibiotics on morphogenesis of Chinese cabbage in tissue culture. J Shandong Agric Univ 31(4):385–388

    Google Scholar 

  • Srisvastava DK (1998) Biotechnology in the development of vegetable crops resistant to insect pests. In: Kohli UK, Korla BN, Narayan R (eds) Advances in breeding and seed production of commercial vegetables, pp 183–186

  • Srivastava DK (1997) Agrobacterium-mediated gene transfer in plants—a review. In: Pareek LK (ed) Trends in plant tissue culture and biotechnology. Agrobotanical Publication, India, pp 17–30

    Google Scholar 

  • Srivastava DK (2003) Genetic transformation and crop improvement. In: Arora JK, Marwaha SS, Grover RK (eds) Biotechnological strategies in agro-processing. Asiatech Publisher, India, pp 251–273

    Google Scholar 

  • Srivastava DK (2012a) Genetic improvement of plants using Agrobacterium-mediated gene transfer technique. In: Proceedings of National symposium on impact of plant tissue culture on advances in plant biology, pp 97–98

  • Srivastava DK (2012b) Genetic engineering of crop plants for insect resistance. In: Proceedings of National seminar on plant cell, tissue and organ culture: emerging trends, pp 6–7

  • Srivastava DK (2013) Genetic improvement of Populus deltoids and Populus ciliata using Agrobacterium-mediated gene transfer technique. In: Proceedings of BIT’S 4th annual world DNA and genome day, p 701

  • Srivastava DK, Gambhir G, Sharma P (2013) Plant cell and tissue culture techniques in crop improvement. In: Panesar PS, Marwaha SS (eds) Biotechnology in agriculture and food processing: opportunities and challenges. CRC Press, Taylor and Francis, New York, pp 73–131

    Chapter  Google Scholar 

  • Su PH, Li HM (2008) Arabidopsis stromal 70-kd heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146(3):1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suri SS, Saini ARK, Ramawat KG (2005) High Frequency Regeneration and Agrobacterium tumefaciens- mediated Transformation of Broccoli (Brassica oleracea var. italica). Eur J Hort Sci 70:71–78

    CAS  Google Scholar 

  • Tabashnik BE, Finson N, Johnson MW (1991) Managing resistance to Bacillus thuringiensis: lessons from the diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 84:49–55

    Article  Google Scholar 

  • Tacke E, Salamini F, Rohde W (1996) Genetic engineering of potato for broad-spectrum protection against virus infection. Nat Biotechnol 14:1597–1601

    Article  CAS  PubMed  Google Scholar 

  • Toriyama K, Stein JC, Nasrallah ME, Nasrallah JB (1991) Transformation of Brassica oleracea with an S-locus gene from B. campestris changes the self-incompatibility phenotype. Theor Appl Genet 81:769–776

    Article  CAS  PubMed  Google Scholar 

  • Tuan VD, Garg GK (2001) Gene transformation in Brassica sp. using particle bombardment technique. Omonrice 9:36–40

    Google Scholar 

  • Vaeck M, Reynaeris A, Hofte H, Jansens S, DeBeukleer MD, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328:33–37

    Article  CAS  Google Scholar 

  • Vallejo F, Garcia-viguera C, Tomas-barberan FA (2003) Changes in broccoli (Brassica oleracea var. italica) health-promoting compounds with inflorescence development. J Agric Food Chem 51:3776–3782

    Article  CAS  PubMed  Google Scholar 

  • Verma H, Gambhir G, Srivastava DK (2014) Genetic transformation studies in broccoli (Brassica oleracia L. var. italica) with npt-II and gus genes. In: National conference on “Perspectives & Trends in Plant Sciences and Biotechnology” organized by Department of Botany, Punjab University Chandigarh & Society for Plant Research(SPR), India, pp 143–144

  • Vetten DN, Wolters AM, Raemakers K, Meer IV, Stege RT, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Viswakarma N, Bhattacharya RC, Chakrabarty R, Dargan S, Bhat SR, Kirti PB, Shastri NV, Chopra VL (2004) Insect resistance of transgenic plants i.e. broccoli (‘Pusa Broccoli KTS-1’) expressing a synthetic cryIA(b) gene. J Hortic Sci Biotechnol 79:182–188

    Article  CAS  Google Scholar 

  • Wagoner WJ, Kellogg JA, Bestwick RK, Stamp JA (1992) Superior regeneration and Agrobacterium infectability of broccoli and cauliflower tissues and the identification of a procedure for the generation of transgenic plants. HortSci 27:620–621

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Waterer D, Lee S, Scoles G, Keller W (2000) Field evaluation of herbicide-resistant transgenic broccoli. HortSci 35:930–932

    CAS  Google Scholar 

  • Wolfson JL, Murdock LL (1987) Suppression of larvae of colarodo potato beetle growth and development by digestive proteinase inhibitor. Entomol Exp Appl 44:235–240

    Article  CAS  Google Scholar 

  • Yan JY, He Y, Cao JS (2004) Factors affecting transformation efficiency by micro-injecting Agrobacterium into flower bud of Chinese cabbage. Agric Sci China 3:44–51

    Google Scholar 

  • Zambrysky P, Joose H, Genetello C, Leemans J, Van Montagu M, Schell J (1983) Ti-plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. Eur Mol Biol Org J 2:2143–2150

    Google Scholar 

  • Zhang YS, Talalay P, Cho CG, Posner G (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89:2399–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JJ, Liu F, Luo C, Yao L, Zhao H, Huang Y (2004) Genetic transformation of Chinese cabbage with a inducible potato pinII gene and the bioassay for Pieris rapae L. resistance. Acta Hortic Sin 31:193–198

    CAS  Google Scholar 

  • Zhao J, Liang A, Zhu Z, Tang Y (2006) Regeneration of Chinese cabbage transgenic plants expressing antibacterial peptide gene and cowpea trypsin inhibitor gene. Euphytica 150(3):397–406

    Article  CAS  Google Scholar 

  • Zhong ZX, Li X (1993) Plant regeneration from hypocotyl protoplasts culture of Brasscia oleracea L. var. italica. Acta Agric Shanghai 9:13–18

    Google Scholar 

Download references

Acknowledgments

The senior author (PK) thankfully acknowledges the award of Department of Science & Technology (DST), Innovation in Science Pursuit for Inspired Research (INSPIRE) fellowship, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Srivastava, D.K. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnol Lett 38, 1049–1063 (2016). https://doi.org/10.1007/s10529-016-2080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2080-9

Keywords

Navigation