Skip to main content

Soil Salinity as a Challenge for Sustainable Agriculture and Bacterial-Mediated Alleviation of Salinity Stress in Crop Plants

  • Chapter
  • First Online:
Saline Soil-based Agriculture by Halotolerant Microorganisms

Abstract

Nowadays, the agricultural productivity is declining due to the negative effects of climate change, global temperature rise, and increased environmental stresses. Therefore, in order to achieve sustainable development in agriculture and to increase agricultural products for feeding all of the world’s people, it seems necessary to use the appropriate solutions and ecologically compatible and environmentally friendly techniques to decrease the adverse effects of these stresses on plant. Soil salinity is a problem for agricultural productivity around the world. According to available reports, crops that grow in salt-affected soils are subject to osmotic stress, poor physical soil conditions, nutritional disorders and toxicity, and reduced crop yields. Limiting crop losses due to salinity stress is a major area of concern to cope with the background of increasing food requirements. Novel agricultural technologies are needed to improve food production in salt-affected soils. Beneficial halotolerant rhizospheric bacteria associated with plant have been known to increase plant tolerance to salinity through mechanisms such as root system development, improved soil structure, increased water and nutrient uptake, reduced sodium absorption, reduced negative effects of stress ethylene, and increased expression of genes involved in resistance to salinity stress. Microbial inoculation to alleviate stresses in plants could be a more cost-effective environment-friendly option which could be available in a shorter time frame. Such inoculants contribute to the development of sustainable agriculture under salinity-stressed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Umar S (2011) Oxidative stress: role of antioxidants in plants. Studium Press, New Delhi

    Google Scholar 

  • Ahmed W, Shahroona B, Zahir ZA, Arshad M (2004) Inoculation with ACC-deaminase containing rhizobacteria for improving growth and yield of wheat. Pak J Agric Sci 41:119

    Google Scholar 

  • Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J Sci 9:43–50

    Google Scholar 

  • Albacete A et al (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen L, Williams M, Serek M (2004) Reduced water availability improves drought tolerance of potted miniature roses: is the ethylene pathway involved? J Hortic Sci Biotechnol 79:1–13

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412

    Article  Google Scholar 

  • Arbona V, Marco AJ, Iglesias DJ, LĂłpez-Climent MF, Talon M, Gomez-Cadenas A (2005) Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L. Plant Growth Regul 46:153–160

    Article  CAS  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora Morphol Distrib Funct Ecol Plants 199:361–376

    Article  Google Scholar 

  • Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174

    Article  CAS  Google Scholar 

  • Atak M, Kaya MD, Kaya G, Çikili Y, Çiftçi CY (2006) Effects of NaCl on the germination, seedling growth and water uptake of triticale. Turk J Agric For 30:39–47

    CAS  Google Scholar 

  • Bae D, Yong K, Chun S (2006) Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J Cent Eur Agric 7:273–282

    Google Scholar 

  • Bai Y et al (2017) Coastal mudflat saline soil amendment by dairy manure and green manuring. Int J 478 Agron 2017:1–9

    Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Bano Q, Ilyas N, Bano A, Zafar N, Akram A, Hassan F (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot 45:13–20

    CAS  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Horticult 109:8–14

    Article  CAS  Google Scholar 

  • Barka EA, Nowak J, ClĂ©ment C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171:884–894

    Article  CAS  PubMed  Google Scholar 

  • Barra PJ, Inostroza NG, Acuña JJ, Mora ML, Crowley DE, Jorquera MA (2016) Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Appl Soil Ecol 102:80–91

    Article  Google Scholar 

  • Bauder TA, Davis JG, Waskom RM, Cardon GE, Follett RH, Franklin WT, Heil RD (2004) Managing saline soils. Service in action; no 0503

    Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423

    Article  CAS  PubMed  Google Scholar 

  • Bell CW, Asao S, Calderon F, Wolk B, Wallenstein MD (2015) Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biol Biochem 85:170–182

    Article  CAS  Google Scholar 

  • Bharti N, Barnawal D, Awasthi A, Yadav A, Kalra A (2014) Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiol Plant 36:45–60

    Article  CAS  Google Scholar 

  • Bhattacharyya D, Yu S-M, Lee YH (2015) Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues. Plant Growth Regul 75:297–306

    Article  CAS  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    Article  CAS  PubMed  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  • Bouhmouch I, Souad-Mouhsine B, Brhada F, Aurag J (2005) Influence of host cultivars and Rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under salt stress. J Plant Physiol 162:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Cassan F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Article  CAS  Google Scholar 

  • Çavusoglu K, Kabar K (2010) Effects of hydrogen peroxide on the germination and early seedling growth of barley under NaCl and high temperature stresses. EurAsian J Biosci 4:70–79

    Article  CAS  Google Scholar 

  • Chaves MM et al (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89:907–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2006) Salt stress signaling and mechanisms of plant salt tolerance. In: Genetic engineering. Springer, p 141–177

    Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • Cohen AC et al (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153:79–90

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, ClĂ©ment C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer GR, Nowak RS (1992) Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley. Physiol Plant 84:600–605

    Article  CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Damodaran T et al (2014) Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. J Plant Interact 9:577–584

    Article  CAS  Google Scholar 

  • Dantas BF, Ribeiro LS, AragĂŁo CA (2005) Physiological response of cowpea seeds to salinity stress. Rev Bras Sementes 27:144–148

    Article  Google Scholar 

  • Dietz K-J, Mittler R, Noctor G (2016) Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiol 171:1535–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, PĂ©rez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Dolatabadian A, Sanavy SAMM, Ghanati F (2011) Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Notulae Sci Biol 3:41

    Article  Google Scholar 

  • Dwivedi S, Upadhyaya H, Subudhi P, Gehring C, Bajic V, Ortiz R (2010) Enhancing abiotic stress tolerance in cereals through breeding and transgenic interventions. Plant Breed Rev 33:31–114

    Google Scholar 

  • Egamberdieva D (2011) Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57:122–127

    Article  Google Scholar 

  • Egamberdieva D (2012) Pseudomonas chlororaphis: a salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiol Plant 34:751–756

    Article  CAS  Google Scholar 

  • Egamberdieva D, Jabborova D (2013) Biocontrol of cotton damping-off caused by Rhizoctonia solani in salinated soil with rhizosphere bacteria. Asian Australas J Plant Sci Biotechnol 7:31–38

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571

    Article  Google Scholar 

  • Egamberdieva D, Gafurova L, Islam R (2007) Salinity effects on irrigated soil chemical and biological properties in the Syr Darya Basin of Uzbekistan

    Google Scholar 

  • Egamberdieva D et al (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47:197–205

    Article  CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas. Plant Soil 369:453–465

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Egamberdiyeva D, Islam KR (2008) Salt-tolerant rhizobacteria: plant growth promoting traits and physiological characterization within ecologically stressed environments. In: Plant-bacteria interactions: strategies and techniques to promote plant growth. p 257–281

    Google Scholar 

  • Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Horticult 124:62–66

    Article  CAS  Google Scholar 

  • Essa TA (2002) Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J Agron Crop Sci 188:86–93

    Article  CAS  Google Scholar 

  • Essghaier B, Dhieb C, Rebib H, Ayari S, Boudabous ARA, Sadfi-Zouaoui N (2014) Antimicrobial behavior of intracellular proteins from two moderately halophilic bacteria: strain J31 of Terribacillus halophilus and strain M3-23 of Virgibacillus marismortui. J Plant Pathol Microbiol 5:1

    Article  CAS  Google Scholar 

  • Etesami H (2018) Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agric Ecosyst Environ 253:98–112. https://doi.org/10.1016/j.agee.2017.11.007

    Article  CAS  Google Scholar 

  • Etesami H, Alikhani HA (2016) Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant. Rhizosphere 2:5–12

    Article  Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Probiotics and plant health. Springer, p 163–200

    Google Scholar 

  • Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148. 1–20. https://doi.org/10.3389/fmicb.2018.00148

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Alikhani HA, Hosseini HM (2015a) Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2:72–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Alikhani HA, Hosseini HM (2015b) Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria. In: Bacterial metabolites in sustainable agroecosystem. Springer, p 183–258

    Google Scholar 

  • Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects – a review. J Soil Sci Plant Nutr 17:897–911

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Ford CW (1984) Accumulation of low molecular weight solutes in water-stressed tropical legumes. Phytochemistry 23:1007–1015

    Article  CAS  Google Scholar 

  • Garcia C, Hernandez T (1996) Influence of salinity on the biological and biochemical activity of a calciorthird soil. Plant Soil 178:255–263

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS et al (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Godfray HCJ et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • GroĂź F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 4:419

    Article  PubMed  PubMed Central  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    Article  CAS  PubMed  Google Scholar 

  • Hamdia MAE-S, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Article  CAS  Google Scholar 

  • Hamilton CE, Bever JD, LabbĂ© J, Yang X, Yin H (2016) Mitigating climate change through managing constructed-microbial communities in agriculture. Agric Ecosyst Environ 216:304–308

    Article  Google Scholar 

  • Han HS, Lee KD (2005) Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1:216–221

    Google Scholar 

  • Han Q-Q et al (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:525

    PubMed  PubMed Central  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10:230–242

    Article  Google Scholar 

  • Heidari M, Jamshid P (2010) Interaction between salinity and potassium on grain yield, carbohydrate content and nutrient uptake in pearl millet. ARPN J Agric Biol Sci 5:39–46

    Google Scholar 

  • Heidari M, Mousavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ocimum basilicum L.) under water stress. ARPN J Agric Biol Sci 6:6–11

    Google Scholar 

  • Horneck DA, Ellsworth JW, Hopkins BG, Sullivan DM, Stevens RG (2007) Managing salt-affected soils for crop production. Oregon State University Extension Service, Covallis

    Google Scholar 

  • Hu Y, Schmidhalter U (2004) Limitation of salt stress to plant growth. In: Hock E (ed) Plant toxicology, vol 4. Marcel Dekker, New York, pp 191–224

    Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947

    Article  CAS  PubMed  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  • Kandowangko NY, Suryatmana G, Nurlaeny N, Simanungkalit RDM (2009) Proline and abscisic acid content in droughted corn plant inoculated with Azospirillum sp. and Arbuscular mycorrhizae fungi. Hayati J Biosci 16:15–20

    Article  Google Scholar 

  • Kang S-M et al (2014a) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682

    Article  CAS  Google Scholar 

  • Kang S-M et al (2014b) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Kaushal M, Wani SP (2016) Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosyst Environ 231:68–78

    Article  CAS  Google Scholar 

  • Kechid M, Desbrosses G, Rokhsi W, Varoquaux F, Djekoun A, Touraine B (2013) The NRT2. 5 and NRT2. 6 genes are involved in growth promotion of Arabidopsis by the plant growth-promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM196. New Phytol 198:514–524

    Article  CAS  PubMed  Google Scholar 

  • Khodarahmpour Z, Ifar M, Motamedi M (2012) Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol 11:298–304

    CAS  Google Scholar 

  • Kim K, Jang Y-J, Lee S-M, Oh B-T, Chae J-C, Lee K-J (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cell 37:109

    Article  CAS  Google Scholar 

  • Kurepin LV, Park JM, Lazarovits G, Bernards MA (2015) Burkholderia phytofirmans-induced shoot and root growth promotion is associated with endogenous changes in plant growth hormone levels. Plant Growth Regul 75:199–207

    Article  CAS  Google Scholar 

  • Ladha JK, Tirol-Padre A, Punzalan GC, Castillo E, Singh U, Reddy CK (1998) Nondestructive estimation of shoot nitrogen in different rice genotypes. Agron J 90:33–40

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Malfanova N, Kamilova F, Berg G (2013) Plant growth promotion by microbes. Mol Microb Ecol Rhizosphere 1 & 2:559–573

    Article  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Article  CAS  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  CAS  PubMed  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Abiotic stress responses in plants. Springer, p 1–19

    Google Scholar 

  • Mapelli F et al (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. BioMed Res Int 2013:248078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nabti E et al (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29:6–22

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Nawaz S (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol 63:225–232

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198:379–387. https://doi.org/10.1007/s00203-016-1197-5

    Article  CAS  PubMed  Google Scholar 

  • Naqvi SM, Ansari R (1974) Estimation of diffusible auxin under saline growth conditions. Cell Mol Life Sci 30:350–350

    Article  CAS  Google Scholar 

  • Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8:5762–5768

    Article  CAS  Google Scholar 

  • Neamatollahi E, Bannayan M, Darban AS, Ghanbari A (2009) Hydropriming and osmopriming effects on cumin (Cuminum Cyminum L.) seeds germination. World Acad Sci Eng Technol 57:526–529

    Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity. Crop Sci 44:797–805

    Article  CAS  Google Scholar 

  • Nia SH, Zarea MJ, Rejali F, Varma A (2012) Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil. J Saudi Soc Agric Sci 11:113–121

    Google Scholar 

  • Nunkaew T, Kantachote D, Nitoda T, Kanzaki H, Ritchie RJ (2015) Characterization of exopolymeric substances from selected Rhodopseudomonas palustris strains and their ability to adsorb sodium ions. Carbohydr Polym 115:334–341

    Article  CAS  PubMed  Google Scholar 

  • Ondrasek G, Rengel Z, Romic D, Poljak M, Romic M (2009) Accumulation of non/essential elements in radish plants grown in salt-affected and cadmium-contaminated environment. Cereal Res Commun 37:9–12

    CAS  Google Scholar 

  • Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbiol 47:621–627. https://doi.org/10.1016/j.bjm.2016.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Othman Y, Al-Karaki G, Al-Tawaha AR, Al-Horani A (2006) Variation in germination and ion uptake in barley genotypes under salinity conditions. World J Agric Sci 2:11–15

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Article  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Sarma YR (2006) Plant growth promoting rhizhobacteria (PGPR)-mediated root proliferation in black pepper (Piper nigrum L.) as evidenced through GS root software. Arch Phytopathol Plant Protect 39:311–314

    Article  CAS  Google Scholar 

  • Paul D, Anandaraj M, Kumar A, Sarma YR (2005) Antagonistic mechanisms of fluorescent pseudomonads against Phytophthora capsici in black pepper (Piper nigrum L.). J Spices Aromat Crop 14:122–129

    Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47:77–80

    Article  CAS  PubMed  Google Scholar 

  • PĂ©rez-Alfocea F, Albacete A, Ghanem ME, Dodd IC (2010) Hormonal regulation of source–sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato. Funct Plant Biol 37:592–603

    Article  Google Scholar 

  • Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8:1757–1764

    Article  CAS  PubMed  Google Scholar 

  • Postma JA, Lynch JP (2011) Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium. Plant Physiol 156:1190–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash L, Prathapasenan G (1990) Interactive effect of NaCl salinity and gibberellic acid on shoot growth, content of abscisic acid and gibberellin-like substances and yield of rice (Oryza sativa L. var GR-3). Proc Plant Sci 100:173–181

    CAS  Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11:501–521

    Article  Google Scholar 

  • Quispel A (1988) Bacteria-plant interactions in symbiotic nitrogen fixation. Physiol Plant 74:783–790

    Article  CAS  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210

    CAS  Google Scholar 

  • Rabie GH, Aboul-Nasr MB, Al-Humiany A (2005) Increased salinity tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungus Glomus clarum and a nitrogen-fixer Azospirillum brasilense. Mycobiology 33:51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman S, Matsumuro T, Miyake H, Takeoka Y (2000) Salinity-induced ultrastructural alterations in leaf cells of rice (Oryza sativa L.). Plant Prod Sci 3:422–429

    Article  Google Scholar 

  • Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263

    Article  Google Scholar 

  • Rajput L, Imran A, Mubeen F, Hafeez FY (2013) Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pak J Bot 45:1955–1962

    Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. SpringerPlus 2:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023. https://doi.org/10.1093/jxb/erj108

    Article  CAS  PubMed  Google Scholar 

  • RincĂłn A, Valladares F, Gimeno TE, Pueyo JJ (2008) Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiol 28:1693–1701

    Article  PubMed  Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904

    Article  CAS  Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol 29:314–319

    Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377:111–126

    Article  CAS  Google Scholar 

  • Saxena SC, Kaur H, Verma P, Petla BP, Andugula VR, Majee M (2013) Osmoprotectants: potential for crop improvement under adverse conditions. In: Plant acclimation to environmental stress. Springer, p 197–232

    Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    Article  CAS  PubMed  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Shahzad SM, Khalid A, Arshad M (2010) Screening rhizobacteria containing ACC-deaminase for growth promotion of chickpea seedlings under axenic conditions. Soil Environ 29:38–46

    CAS  Google Scholar 

  • Shannon MC, Grieve CM (1998) Tolerance of vegetable crops to salinity. Sci Horticult 78:5–38

    Article  Google Scholar 

  • Shaterian J, Waterer D, De Jong H, Tanino KK (2005a) Differential stress responses to NaCl salt application in early-and late-maturing diploid potato (Solanum sp.) clones. Environ Exp Bot 54:202–212

    Article  CAS  Google Scholar 

  • Shaterian J, Waterer D, Jong HD, Tanino KK (2005b) Differential stress responses to NaCl salt application in early- and late-maturing diploid potato (Solanum sp.) clones. Environ Exp Bot 54:202–212. https://doi.org/10.1016/j.envexpbot.2004.07.005

    Article  CAS  Google Scholar 

  • Shintu PV, Jayaram KM (2015) Phosphate solubilising bacteria (Bacillus polymyxa)-an effective approach to mitigate drought in tomato (Lycopersicon esculentum Mill.). Trop Plant Res 2:17–22

    Google Scholar 

  • Shirokova Y, Forkutsa I, Sharafutdinova N (2000) Use of electrical conductivity instead of soluble salts for soil salinity monitoring in Central Asia. Irrig Drain Syst 14:199–206

    Article  Google Scholar 

  • Shrivastava UP, Kumar A (2013) Characterization and optimization of 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity in different rhizospheric PGPR along with Microbacterium sp. strain ECI-12A. Int J Appl Sci Biotechnol 1:11–15

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachishypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han G-H, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Jong Yim W, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

    Article  CAS  PubMed  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singleton PW, Bohlool BB (1984) Effect of salinity on nodule formation by soybean. Plant Physiol 74:72–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ĺ tajner D, Kevrešan S, Gašić O, Mimica-Dukić N, Zongli H (1997) Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biol Plant 39:441

    Article  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Tardieu F, Parent B, Simonneau T (2010) Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? Plant Cell Environ 33:636–647

    Article  PubMed  Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl–ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tejada M, Garcia C, Gonzalez JL, Hernandez MT (2006) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol Biochem 38:1413–1421. https://doi.org/10.1016/j.soilbio.2005.10.017

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tewari S, Arora NK (2014) Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69:484–494

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AK, Mishra BM, Tripathi P (1998) Salinity stress responses in the plant growth promoting rhizobacteria, Azospirillum spp. J Biosci 23:463–471

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17:288–293

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14:605–611

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Bakker P, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    Article  CAS  Google Scholar 

  • Venkateswarlu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation strategies. Indian J Agron 54:226

    Google Scholar 

  • Vimal SR, Singh JS, Karora N, Singh DP (2016) PGPR: an effective bio-agent in stress agricultural management

    Google Scholar 

  • Wang C-J et al (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7:e52565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Sun X, Li S, Zhang T, Zhang W, Zhai P (2014) Application of organic amendments to a coastal saline soil in north China: effects on soil physical and chemical properties and tree growth. PLoS One 9:e89185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Werner JE, Finkelstein RR (1995) Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiol Plant 93:659–666

    Article  CAS  Google Scholar 

  • Wood NT (2001) Nodulation by numbers: the role of ethylene in symbiotic nitrogen fixation. Trends Plant Sci 6:501–502

    Article  CAS  PubMed  Google Scholar 

  • Xu G-Y et al (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Yasmin F, Othman R, Saad MS, Sijam K (2007) Screening for beneficial properties of Rhizobacteria isolated from sweet potato rhizosphere. Biotechnology 6:49–52

    Article  Google Scholar 

  • Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean plants under salt stress. Science 123:1

    Google Scholar 

  • Yildirim E, Turan M, Ekinci M, Dursun A, Cakmakci R (2011) Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Sci Res Essays 6:4389–4396

    Article  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    CAS  PubMed  Google Scholar 

  • Zaki NM, Ahmed MA, Hassanein MS (2004) Growth and yield of some wheat cultivars irrigated with saline water in newly cultivated land as affected by nitrogen fertilization. Ann Agric Sci Moshtohor 42:515–525

    Google Scholar 

  • Zhang H, Kim M-S, Sun Y, Dowd SE, Shi H, ParĂ© PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Smith JAC, Harberd NP, Jiang C (2016) The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Mol Biol 91:651–659

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Qin S, Lyu D, Zhang P (2015) Soil sterilisation and plant growth-promoting rhizobacteria promote root respiration and growth of sweet cherry rootstocks. Arch Agron Soil Sci 61:361–370

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We wish to thank the University of Tehran for providing the necessary facilities and funds for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Etesami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Etesami, H., Noori, F. (2019). Soil Salinity as a Challenge for Sustainable Agriculture and Bacterial-Mediated Alleviation of Salinity Stress in Crop Plants. In: Kumar, M., Etesami, H., Kumar, V. (eds) Saline Soil-based Agriculture by Halotolerant Microorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-8335-9_1

Download citation

Publish with us

Policies and ethics