Skip to main content
Log in

Burkholderia phytofirmans-induced shoot and root growth promotion is associated with endogenous changes in plant growth hormone levels

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant growth promoting bacteria (PGPB) are capable of significantly altering the growth phenotype of inoculated plants. Changes in growth phenotype are often attributed to the ability of PGPB to assimilate minerals and/or increase mineral uptake, leading to increased plant root growth. However, many PGPB are also capable of either synthesizing plant hormones, such as auxins (mainly indole-3-acetic acid or IAA), gibberellins (GAs) and cytokinins (CKs) or affecting plant hormone biosynthesis (homeostasis) in planta. Burkholderia phytofirmans strain PsJN is a PGPB capable of inducing biomass growth of several plant species, including potatoes (Solanum tuberosum L.). In this paper we examined the effect of PsJN inoculation of two potato cultivars with similar root growth, but different shoot growth patterns (faster-growing Kennebec and slower-growing Yukon gold) to asses the bacteria’s impact on growth and plant hormone homeostasis. Both cultivars showed similar and massive root growth increases after inoculation and this was associated with a twofold to threefold increase in IAA and CK (trans-zeatin or tZ) levels, expressed on a per plant basis. However, PsJN inoculation resulted in a different shoot growth response, which appeared to depend on the inherent growth characteristics of each cultivar. That is, the slower-growing Yukon gold plants matched the growth rate of faster-growing Kennebec plants 20 days after inoculation and this was associated with higher GA1 levels and lower tZ levels. It is thus concluded that B. phytofirmans strain PsJN-induced plant phenotypic changes are associated with, and likely dependent on, changes in biosynthesis of plant growth hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Ait Barka E, Belarbi A, Hachet C, Nowak J, Audran JC (2000) Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera L. co cultured with plant growth-promoting rhizobacteria. FEMS Microbiol Lett 186:91–95

    Article  Google Scholar 

  • Atzorn R, Crozier A, Wheeler CT, Sandberg G (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538

    Article  CAS  PubMed  Google Scholar 

  • Bastian F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of IAA and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  CAS  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of gibberellins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chhun T, Taketa S, Tsurumi S, Ichii M (2003) The effects of auxin on lateral root initiation and root gravitropism in a lateral rootless mutant Lrt1 of rice (Oryza sativa L.). Plant Growth Regul 39:161–170

    Article  CAS  Google Scholar 

  • Chhun T, Taketa S, Tsurumi S, Ichhii M (2004) Different behaviour of indole-3-acetic acid and indole-3-butryric acid in stimulating lateral root development in rice (Oryza sativa L.). Plant Growth Regul 43:135–143

    Article  CAS  Google Scholar 

  • Cleland RE (2010) Auxin and cell elongation. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction and action!, 3rd edn. Springer Heidelberg, New York, pp 204–220

    Chapter  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promotion bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence and function. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction and action!, 3rd edn. Springer, New York, pp 1–15

    Chapter  Google Scholar 

  • De Klerk GJ, Van Der Krieken W, De Jong JC (1999) The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 35:189–199

    Article  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Francisco Aguirre J, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Dobrev P, Kaminek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29

    Article  PubMed  Google Scholar 

  • Fabijan D, Taylor JS, Reid DM (1981) Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. II. Action of gibberellins, cytokinins, auxins and ethylene. Physiol Plant 53:589–597

    Article  CAS  Google Scholar 

  • Fages J (1994) Azospirillum inoculants and field experiments. In: Okon Y (ed) Azospirillum-plant associations. CRC Press, Boca Raton, pp 87–110

    Google Scholar 

  • Fages J, Arsac JF (1991) Sunflower inoculation with Azospirillum and other plant growth promoting rhizobacteria. Plant Soil 137:87–90

    Article  Google Scholar 

  • Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum ssp. tuberosum). Plant Physiol 96:928–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–114

    Article  CAS  Google Scholar 

  • Hewelt A, Prinsen E, Schell J, van Onckelen H, Schmulling T (1994) Promoter tagging with a promoterless ipt gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants: implications of gene dosage effects. Plant J 6:879–891

    Article  CAS  PubMed  Google Scholar 

  • Ivanova EG, Doronina NV, Trotsenko YA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70:392–397

    Article  CAS  Google Scholar 

  • Jacoud C, Faure D, Wadoux P, Bally R (1998) Development of a strain-specific probe to follow inoculated Azospirillum lipoferum CRT1 maize root development by inoculation. FEMS Microbiol Ecol 27:43–51

    Article  CAS  Google Scholar 

  • Janzen RA, Rood SB, Dormaar JF, McGill WB (1992) Azospirillum brasilense produces gibberellin in pure culture on chemically-defined medium and in co-culture on straw. Soil Biol Biochem 24:1061–1064

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Konieczny R, Kępczynski J, Pilarska M, Cembrowska D, Menzel D, Samaj J (2009) Cytokinin and ethylene affect auxin transport-dependent rhizogenesis in hypocotyls of common ice plant (Mesembryanthemum crystallinum L.). J Plant Growth Regul 28:331–340

    Article  CAS  Google Scholar 

  • Kurepin LV, Emery RJN, Pharis RP, Reid DM (2007a) The interaction of light quality and irradiance with gibberellins, cytokinins and auxin in regulating growth of Helianthus annuus hypocotyls. Plant Cell Environ 30:147–155

    Article  CAS  PubMed  Google Scholar 

  • Kurepin LV, Emery RJN, Pharis RP, Reid DM (2007b) Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. J Exp Bot 58:2145–2157

    Article  CAS  PubMed  Google Scholar 

  • Kurepin LV, Haslam T, Lopez-Villalobos A, Oinam G, Yeung EC (2011a) Adventitious root formation in ornamental plants: II. The effects of plant growth regulators. Propag Ornam Plants 11:161–171

    Google Scholar 

  • Kurepin LV, Walton LJ, Yeung EC, Reid DM (2011b) The interaction of light irradiance with auxin in regulating growth of Helianthus annuus shoots. Plant Growth Regul 65:255–262

    Article  CAS  Google Scholar 

  • Kurepin LV, Walton LJ, Pharis RP, Emery RJN, Reid DM (2011c) Interactions of temperature and light quality on phytohormone-mediated elongation of Helianthus annuus hypocotyls. Plant Growth Regul 64:147–154

    Article  CAS  Google Scholar 

  • Kurepin LV, Ozga JA, Zaman M, Pharis RP (2013) The physiology of plant hormones in cereal, oilseed and pulse crops. Prairie Soils Crops 6:7–23

    Google Scholar 

  • Kurepin LV, Zaman M, Pharis RP (2014) Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators. J Sci Food Agric. doi:10.1002/jsfa.6545

    Google Scholar 

  • Lazarovits G, Nowak J (1997) Rhizobacteria for improvement of plant growth and establishment. Hortic Sci 32:188–192

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Garcia J, Garcia-Martinez JL, Bou J, Prat S (2002) The interaction of gibberellins and photoperiod in the control of potato tuberization. J Plant Growth Regul 20:377–386

    Article  Google Scholar 

  • Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283

    Article  CAS  PubMed  Google Scholar 

  • O’Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130:1974–1982

    Article  PubMed Central  PubMed  Google Scholar 

  • Ozga JA, Ju J, Reinecke DM (2003) Pollination-, development-, and auxin-specific regulation of gibberellins 3β-hydroxylase gene expression in pea fruit and seeds. Plant Physiol 131:1137–1146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pal AK, Acharya K, Ahuja PS (2012) Endogenous auxin level is a critical determinant for in vitro adventitious shoot regeneration in potato (Solanum tuberosum L.). J Plant Biochem Biotech 21:205–212

    Article  CAS  Google Scholar 

  • Rao NSS (1986) Cereal nitrogen fixation research under the BNF coordinated project of the ICAR. In: Wani SP (ed) Proceedings of the working group meeting on cereal nitrogen fixation. ICRISA, Patancheru, pp 23–35

    Google Scholar 

  • Reinecke DM, Wickramarathna AD, Ozga JA, Kurepin LV, Jin AL, Good AG, Pharis RP (2013) GA3ox gene expression patterns influence GA biosynthesis, growth, and development in pea. Plant Physiol 163:929–945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roef L, van Onckelen H (2010) Cytokinin regulation of the cell division cycle. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction and action!, 3rd edn. Springer Heidelberg, New York, pp 241–261

    Chapter  Google Scholar 

  • Rood SB, Blake TJ, Pharis RP (1983) Gibberellins and heterosis in maize II. Response to gibberellic acid and metabolism of [3H] gibberellin A20. Plant Physiol 71:645–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ross JJ, O’Neill DP, Smith JJ, Kerckhoffs LHJ, Elliott RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J 21:547–552

    Article  CAS  PubMed  Google Scholar 

  • Saharan BC, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sakakibara H (2010) Cytokinin biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction and action!, 3rd edn. Springer, New York, pp 95–114

    Chapter  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka E, Wang-Pruski G, Faure D, Reiter B, Glick BR, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Sokolova MG, Akimova GP, Nechaeva LV (2005) Cytokinins in symbiosis of legumes and rhizobacteria at lower temperatures. Agrochimiya 5:66–70

    Google Scholar 

  • Sponsel VM, Hedden P (2010) Gibberellin biosynthesis and inactivation. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction and action!, 3rd edn. Springer, New York, pp 63–94

    Chapter  Google Scholar 

  • Vessey JK (2003) Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Natural Sciences and Engineering Research Council Engage grant to MAB and GL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Bernards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurepin, L.V., Park, J.M., Lazarovits, G. et al. Burkholderia phytofirmans-induced shoot and root growth promotion is associated with endogenous changes in plant growth hormone levels. Plant Growth Regul 75, 199–207 (2015). https://doi.org/10.1007/s10725-014-9944-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9944-6

Keywords

Navigation