Skip to main content

Plant Nutrients and Their Roles Under Saline Soil Conditions

  • Chapter
  • First Online:
Plant Nutrients and Abiotic Stress Tolerance

Abstract

It is well established that the nutrients of plant play a vital role in all plant processes starting from the emergence, development, productivity, and metabolism reaching to the promotion and protection of plants. These plant nutrients could be in general characterized as macronutrients (e.g., Ca, Mg S, N, K, and P) and micronutrients (i.e., Fe, B, Cu, Mn, Cl, Ni, Mo, Co, and Zn) as well as beneficial elements (e.g., Si, Se, Na, and V). These previous mineral nutrients also could protect crop plants against both abiotic and biotic stresses by enhancing the plant resistance power and regulating the mineral nutritional status. Therefore, any plant nutritional problems (like poor soil fertility, imbalance, and deprived delivery of nutrients) definitely will lead to reduce the global production of foods. Thus, it should protect crop production from different stresses through the appropriate agricultural management. Soil salinity was and still one of these plant stresses. A distinguished role of plant nutrients (e.g., N, K, Se, and Si) in ameliorating soil salinity stress has been reported as well as nano-selenium and nano-silica. Several reports have confirmed the great role of these previous plant nutrients under saline soil conditions. Therefore, this review will focus on the role of selenium and silicon in conventional and nano-forms under saline soil conditions. The phytoremediation of these saline soils and the role of plant nutrients will be also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahanger MA, Tittal M, Ahmad Mir R, Agarwal RM (2017) Alleviation of water and osmotic stress-induced changes in nitrogen metabolizing enzymes in Triticum aestivum L. cultivars by potassium. Protoplasma. https://doi.org/10.1007/s00709-017-1086-z

  • Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanumly copersicum L.) seedlings under salt stress. Plant Omics J 9:106–114

    CAS  Google Scholar 

  • Alsaeedi A, Alshaal TA, El-Ramady H, Almohsen M (2017a) Enhancing seed germination and seedlings development of common bean (Phaseolus vulgaris) by SiO2 nanoparticles. Egypt J Soil Sci. https://doi.org/10.21608/EJSS.2017.891.1098

  • Alsaeedi AH, El-Ramady H, Alshaal T, El-Garawani M, Elhawat N, Almohsen M (2017b) Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-9847-y

  • Alshaal T, El-Ramady H, Al-Saeedi AH, Shalaby T, Elsakhawy T, AED O, Gad A, Hamad E, El-Ghamry A, Mosa A, Amer M, Abdalla N (2017) The rhizosphere and plant nutrition under climate change. In: Naeem M et al (eds) Essential plant nutrients. Springer International Publishing, Cham

    Google Scholar 

  • Anjum NA, Gill SS, Tuteja N (2017a) Enhancing cleanup of environmental pollutants. Vol. 1: biological approaches. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-55426-6

    Book  Google Scholar 

  • Anjum NA, Gill SS, Tuteja N (2017b) Enhancing cleanup of environmental pollutants. Non-biological approaches. Springer International Publishing, Cham

    Book  Google Scholar 

  • Anjum NA, Gill SS, Tuteja N (2017c) Biological approaches for enhancing the cleanup of environmental pollutants: an introduction. In: Anjum NA et al (eds) Enhancing cleanup of environmental pollutants. Springer International Publishing, Cham

    Google Scholar 

  • Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (2017) Phytoremediation: management of environmental contaminants. Springer International Publishing AG, Cham

    Google Scholar 

  • Arora S, Rao GG (2017) Bio-amelioration of salt-affected soils through halophyte plant species. In: Arora S et al (eds) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, Cham

    Chapter  Google Scholar 

  • Arora S, Singh AK, Singh YP (2017) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, Cham

    Book  Google Scholar 

  • Balakhnina TI, Nadezhkina ES (2017) Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Russ J Plant Physiol 64:215–223

    Article  CAS  Google Scholar 

  • Balakhnina TI, Bulak P, Matichenkov VV, Kosobryukhov AA, Włodarczyk TM (2015) The influence of Si-rich mineral zeolite on the growth processes and adaptive potential of barley plants under cadmium stress. Plant Growth Regul 75:557–565

    Article  CAS  Google Scholar 

  • Bauddh K, Singh B, Korstad J (2017) Phytoremediation potential of bioenergy plants. Springer Nature, Singapore

    Book  Google Scholar 

  • Belal E, El-Ramady H (2016) Nanoparticles in water, soils and agriculture. In: Ranjan S et al (eds) Nanoscience in food and agriculture 2, sustainable agriculture reviews 21. Springer International Publishing, Cham

    Google Scholar 

  • Benko I, Nagy G, Tanczos B, Ungvari E, Sztrik A, Eszenyi P, Prokisch J, Banfalvi G (2012) Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ Toxicol Chem 31:2812–2820

    Article  PubMed  CAS  Google Scholar 

  • Berendse F, van Ruijven J, Jongejans E, Keesstra S (2015) Loss of plant species diversity reduces soil erosion resistance. Ecosystems 18:881–888

    Article  CAS  Google Scholar 

  • Bharti P, Singh B, Bauddh K, Dey RK, Korstad J (2017) Efficiency of bioenergy plant in phytoremediation of saline and sodic soil. In: Bauddh K et al (eds) Phytoremediation potential of bioenergy plants. Springer Nature Singapore Pte Ltd, Singapore

    Google Scholar 

  • Bhattacharjee A, Basu A, Sen T, Biswas J, Bhattacharya S (2017) Nano-Se as a novel candidate in the management of oxidative stress related disorders and cancer. Nucleus 60:137–145

    Article  Google Scholar 

  • Borde M, Dudhane M, Kulkarni M (2017) Role of arbuscular mycorrhizal fungi (AMF) in salinity tolerance and growth response in plants under salt stress conditions. In: Varma A et al (eds) Mycorrhiza – eco-physiology, secondary metabolites, nanomaterials. Springer International Publishing AG, Cham

    Google Scholar 

  • Cao F, Fu M, Wang R, Cheng W, Zhang G, Wu F (2017a) Genotypic-dependent effects of N fertilizer, glutathione, silicon, zinc, and selenium on proteomic profiles, amino acid contents, and quality of rice genotypes with contrasting grain Cd accumulation. Funct Integr Genomics 17:387–397

    Article  PubMed  CAS  Google Scholar 

  • Cao B, Wang L, Gao S, Xia J, Xu K (2017b) Silicon-mediated changes in radial hydraulic conductivity and cell wall stability are involved in silicon-induced drought resistance in tomato. Protoplasma. https://doi.org/10.1007/s00709-017-1115-y

  • Chakravarty P, Bauddh K, Kumar M (2017) Phytoremediation: a multidimensional and ecologically viable practice for the cleanup of environmental contaminants. In: Bauddh K et al (eds) Phytoremediation potential of bioenergy plants. Springer Nature, Singapore

    Google Scholar 

  • Chhipa H, Joshi P (2016) Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Ranjan S et al (eds) Nanoscience in food and agriculture 1, sustainable agriculture reviews 20. Springer International Publishing, Cham

    Google Scholar 

  • Choudhary OP (2017) Use of amendments in ameliorating soil and water sodicity. In: Arora S et al (eds) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, Cham

    Google Scholar 

  • Daliakopoulos IN, Tsanis IK, Koutroulis A, Kourgialas NN, Varouchakis AE, Karatzas GP, Ritsema CJ (2016) The threat of soil salinity: a European scale review. Sci Total Environ 573:727–739

    Article  PubMed  CAS  Google Scholar 

  • Decock C, Lee J, Necpalova M, Pereira EIP, Tendall DM, Six J (2015) Mitigating N2O emissions from soil: from patching leaks to transformative action. Soil 1:687–694

    Article  CAS  Google Scholar 

  • Dhillon KS, Bañuelos GS (2017) Overview and prospects of selenium phytoremediation approaches. In: Pilon-Smits EAH et al (eds) Selenium in plants, plant ecophysiology 11. Springer International Publishing, Cham

    Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24:119–129

    Article  PubMed  CAS  Google Scholar 

  • Domokos-Szabolcsy E (2011) Biological effect and fortification possibilities of inorganic selenium forms in higher plants. PhD dissertation. Debrecen University

    Google Scholar 

  • Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–531

    Article  CAS  Google Scholar 

  • Domokos-Szabolcsy E, Abdalla N, Alshaal T, Sztrik A, Márton L, El-Ramady H (2014) In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance. Int J Hortic Sci 20:119–122

    Google Scholar 

  • Domokos-Szabolcsy É, Alshaal T, Elhawat N, Abdalla N, dos Reis AR, El-Ramady H (2017) The interactions between selenium, nutrients and heavy metals in higher plants under abiotic stresses. Env Biodiv Soil Secur 1:5–31

    Article  Google Scholar 

  • dos Reis AR, El-Ramady H, Santos EF, Gratão PL, Schomburg L (2017) Overview of selenium deficiency and toxicity worldwide: affected areas, selenium-related health issues, and case studies. In: EAH P-S et al (eds) Selenium in plants, plant ecophysiology 11. Springer International Publishing AG, Cham

    Google Scholar 

  • El-Ramady HR (2014) Integrated nutrient management and postharvest of crops. In: Lichtfouse E (ed) Sustainable agriculture reviews: volume 13, sustainable agriculture reviews 13. Springer International Publishing, Cham

    Google Scholar 

  • El-Ramady HR, Alshaal TA, Shehata SA, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Fári M, Marton L (2014a) Plant nutrition: from liquid medium to micro-farm. In: Ozier-Lafontaine H, Lesueur-Jannoyer M (eds) Sustainable agriculture reviews 14: agroecology and global change, sustainable agriculture reviews 14. Springer International Publishing, Cham

    Google Scholar 

  • El-Ramady HR, Alshaal TA, Amer M, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Fári M (2014b) Soil quality and plant nutrition. In: Ozier-Lafontaine H, Lesueur-Jannoyer M (eds) Sustainable agriculture reviews 14: agroecology and global change, sustainable agriculture reviews 14. Springer International Publishing, Cham

    Google Scholar 

  • El-Ramady HR, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M (2014c) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12:495–510

    Article  CAS  Google Scholar 

  • El-Ramady HR, Abdalla N, Alshaal T, Elhenawy AS, Shams MS, Faizy SEDA, Belal EB, Shehata SA, Ragab MI, Amer MM, Fari M, Sztrik A, Prokisch J, Selmar D, Schnug E, Pilon-Smits EAH, El-Marsafawy SM, Domokos-Szabolcsy E (2015a) Giant reed for selenium phytoremediation under changing climate. Environ Chem Lett 13:359–380

    Article  CAS  Google Scholar 

  • El-Ramady HR, Abdalla N, Alshaal T, Fári M, Prokisch J, Pilon-Smits EAH, Domokos-Szabolcsy É (2015b) Selenium phytoremediation by giant reed. In: Lichtfouse E et al (eds) Hydrogen production and remediation of carbon and pollutants, environmental chemistry for a sustainable world 6. Springer International Publishing, Cham

    Google Scholar 

  • El-Ramady H, Alshaal T, Abdalla N, Prokisch J, Sztrik A, Fári M, Domokos-Szabolcsy É (2015c) Selenium and nano-selenium biofortified sprouts using micro-farm system. The 4th International Conference of the International Society for Selenium Research (ISSR) on Selenium in the Environment and Human Health, 18–21 October 2015, Sao Paulo, Brazil

    Chapter  Google Scholar 

  • El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Faizy SEDA, Shams MS, Youssef SM, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fari M, Domokos-Szabolcsy E, Pilon-Smits EA, Selmar D, Haneklaus S, Schnug E (2016) Selenium and nano-selenium in plant nutrition. Environ Chem Lett 14:123–147

    Article  CAS  Google Scholar 

  • El-Ramady H, Alshaal T, Abowaly M, Abdalla N, Taha HS, Al-Saeedi AH, Shalaby T, Amer M, Fári M, Domokos-Szabolcsy É, Sztrik A, Prokisch J, Selmar D, Pilon-Smits EAH, Pilon M (2017) Nanoremediation for sustainable crop production. In: Ranjan S et al (eds) Nanoscience in food and agriculture 5, sustainable agriculture reviews 26. Springer International Publishing, Cham

    Google Scholar 

  • Emadi M, Savasari M, Bahmanyar MA, Biparva P (2016) Application of stabilized zero valent iron nanoparticles for immobilization of lead in three contrasting spiked soils. Res Chem Intermed. https://doi.org/10.1007/s11164-016-2494-y

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Kumar V et al (eds) Probiotics and plant health. Springer Nature, Singapore

    Google Scholar 

  • Farooq MA, Saqib ZA, Akhtar J, Bakhat HF, Pasala RK, Dietz KJ (2015) Protective role of silicon (Si) against combined stress of salinity and boron (B) toxicity by improving antioxidant enzymes activity in rice. Silicon 7:1–5. https://doi.prg/10.1007/s12633-015-9346-z

  • Forni C, Daiana D, Bernard RG (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410:335–356

    Article  CAS  Google Scholar 

  • Forootanfara H, Mahboubeh A, Maryam N, Mitra M, Bagher A, Ahmad S (2013) Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J Trace Elem Med Biol. https://doi.org/10.1016/j.jtemb.2013.07.005

  • Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+ /Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78:371–387

    Article  CAS  Google Scholar 

  • Gerhardt KE, MacNeill GJ, Gerwing PD, Greenberg BM (2017) Phytoremediation of salt-impacted soils and use of plant growth-promoting rhizobacteria (PGPR) to enhance phytoremediation. In: Ansari AA et al (eds) Phytoremediation. Springer International Publishing, Cham

    Google Scholar 

  • Gu Y, Cui R, Zhang Z, Xie Z, Pang D (2012) Ultra-small nearinfrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc 134:79–82

    Article  PubMed  CAS  Google Scholar 

  • Guangming L, Xuechen Z, Xiuping W, Hongbo S, Xiangping W (2017) Soil enzymes as indicators of saline soil fertility under various soil amendments. Agric Ecosyst Environ 237:274–279

    Article  CAS  Google Scholar 

  • Gupta A, Senthil-Kumar M (2017) Concurrent stresses are perceived as new state of stress by the plants: overview of impact of abiotic and biotic stress combinations. In: Senthil-Kumar M (ed) Plant tolerance to individual and concurrent stresses. Springer, New Delhi

    Google Scholar 

  • Habibi G (2017) Selenium ameliorates salinity stress in Petroselinum crispum by modulation of photosynthesis and by reducing shoot Na accumulation. Russ J Plant Physiol 64:368–374

    Article  CAS  Google Scholar 

  • Haghighi M, Abolghasemi R, Teixeira da Silva JA (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hortic 178:231–240

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143(3):1758–1776

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013a) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmed P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad MNV, Ozturk M (2013b) Enhancing plant productivity under salt stress – relevance of poly-omics. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: omics, signaling and responses. Springer, Berlin, pp 113–156

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2014a) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161:297–307

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MNV, Ozturk M, Fujita M (2014b) Potential use of halophytes to remediate saline soils. BioMed Resh Int. https://doi.org/10.1155/2014/589341

  • Hasanuzzaman M, Nahar K, Rahman A, Al Mahmud J, Hossain MS, Alam MK, Oku H, Fujita M (2017) Actions of biological trace elements in plant abiotic stress tolerance. In: Naeem M et al (eds) Essential plant nutrients. Springer International Publishing, Cham

    Google Scholar 

  • Hnain A, Brooks J, Lefebvre DD (2013) The synthesis of elemental selenium particles by Synechococcus leopoliensis. Appl Microbiol Biotechnol 97:10511–10519

    Article  PubMed  CAS  Google Scholar 

  • Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:1–18

    Article  Google Scholar 

  • Hu CH, Li YL, Xiong L, Zhang HM, Song J, Xia MS (2012) Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol 177:204–210

    Article  CAS  Google Scholar 

  • Huang YM, Wu QS (2017) Arbuscular mycorrhizal fungi and tolerance of Fe stress in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer Nature, Singapore

    Google Scholar 

  • Huang D, Gong X, Liu Y, Zeng G, Lai C, Bashir H, Zhou L, Wang D, Xu P, Cheng M, Wan J (2017) Effects of calcium at toxic concentrations of cadmium in plants. Planta 245:863–873

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res 23:13754–13788

    Article  CAS  Google Scholar 

  • Jampílek J, Kráľová K (2017) Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. In: Prasad R et al (eds) Nanotechnology. Springer Nature, Singapore

    Google Scholar 

  • Kalia VC, Kumar P (2017) Microbial applications vol.1: bioremediation and bioenergy. Springer International Publishing, Cham

    Book  Google Scholar 

  • Karimi J, Mohsenzadeh S (2016) Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ J Plant Physiol 63:119–123

    Article  CAS  Google Scholar 

  • Keesstra S, Geissen V, Mosse K, Piiranen S, Scudiero E, Leistra M, van Schaik L (2012) Soil as a filter for groundwater quality. Curr Opin Environ Sustain 4:507–516

    Article  Google Scholar 

  • Khan PSSV, Basha PO (2016) Salt stress and leguminous crops: present status and prospects. In: Azooz MM, Ahmad P (eds) Legumes under environmental stress: yield, improvement and adaptations. Wiley, Hoboken

    Google Scholar 

  • Khan MIR, Khan NA (2017) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer Nature, Singapore

    Book  Google Scholar 

  • Khan A, Tan DKY, Afridi MZ, Luo H, Tung SA, Ajab M, Fahad S (2017) Nitrogen fertility and abiotic stresses management in cotton crop: a review. Environ Sci Pollut Res 24:14551–14566

    Article  CAS  Google Scholar 

  • Kim MJ, Radhakrishnan R, Kang SM, You YH, Jeong EJ, Kim JG, Lee IJ (2017) Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity

    Google Scholar 

  • Kiryushina AP, Voronina LP (2017) Foliar treatment of barley by sodium selenium in controlled conditions. Moscow Univ Soil Sci Bull 72:61–65

    Article  Google Scholar 

  • Klotzbucher A, Klotzbucher T, Jahn R, Xuan LD, Cuong LQ, Chien HV, Hinrichs M, Sann C, Vetterlein D (2017) Effects of Si fertilization on Si in soil solution, Si uptake by rice, and resistance of rice to biotic stresses in Southern Vietnam. Paddy Water Environ. https://doi.org/10.1007/s10333-017-0610-2

  • Kong L, Yuan Q, Zhu H, Li Y, Guo Q, Wang Q, Bi X, Gao X (2011) The suppression of prostate LNCaP cancer cells growth by selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials 32:6515–6522

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Kumar M, Shrivastava N, Bisht S, Sharma S, Varma A (2016) Interaction among rhizospheric microbes, soil, and plant roots: influence on micronutrient uptake and bioavailability. Hakeem KR, Akhtar MS Plant, soil and microbes, Springer International Publishing Cham, 169–185

    Chapter  Google Scholar 

  • Kumar M, Prasad R, Kumar V, Tuteja N, Varma A (2017a) Mycorrhizal fungi under biotic and abiotic stress. In: Varma A et al (eds) Mycorrhiza – eco-physiology, secondary metabolites, nanomaterials. Springer International Publishing, Cham

    Google Scholar 

  • Kumar M, Shamsi TN, Parveen R, Fatima S (2017b) Application of nanotechnology in enhancement of crop productivity and integrated pest management. In: Prasad R et al (eds) Nanotechnology. Springer Nature, Singapore

    Google Scholar 

  • Kumar P, Sharma V, Atmaram CK, Singh B (2017c) Regulated partitioning of fixed carbon (14C), sodium (Na+), potassium (K+) and glycine betaine determined salinity stress tolerance of gamma irradiated pigeonpea [Cajanus cajan L. Millsp]. Environ Sci Pollut Res 24:7285–7297

    Article  CAS  Google Scholar 

  • Li HQ, Jiang XW (2017) Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ J Plant Physiol 64:235–241

    Article  CAS  Google Scholar 

  • Li P, Zhao CZ, Zhang YQ, Wang XM, Wang JF, Wang F, Bi YR (2017) Silicon enhances the tolerance of Poa annua to cadmium by inhibiting its absorption and oxidative stress. Biol Plant 61:741–750

    Article  CAS  Google Scholar 

  • Libralato G, Devoti AC, Ghirardini AV, Vignati DAL (2017) Environmental effects of nZVI for land and groundwater remediation. In: Lofrano G et al (eds) Nanotechnologies for environmental remediation. Springer International Publishing, Cham

    Google Scholar 

  • Liu J, Cai H, Mei C, Wang M (2015) Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Front Environ Sci Eng 9:905–911

    Article  CAS  Google Scholar 

  • Lofrano G, Libralato G, Brown J (2017) Nanotechnologies for environmental remediation: applications and implications. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-53162-5

    Book  Google Scholar 

  • Luo WT, Elser JJ, Lü XT, Wang ZW, Bai E, Yan CF, Wang C, Li MH, Zimmermann NE, Han XG, Xu ZW, Li H, Wu YN, Jiang Y (2015a) Plant nutrients do not covary with soil nutrients under changing climatic conditions. Glob Biogeochem Cycles 29. https://doi.org/10.1002/2015GB005089

  • Luo WT, Nelson PN, Li MH, Cai JP, Zhang Y, Yang S, Wang RZ, Han XG, Jiang Y (2015b) Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China. Biogeosciences 12:7047–7056

    Article  CAS  Google Scholar 

  • Luo W, Sardans J, Dijkstra FA, Peñuelas J, Lü XT, Wu H, Li MH, Bai E, Wang Z, Han X, Jiang Y (2016) Thresholds in decoupled soil-plant elements under changing climatic conditions. Plant Soil 409:159–173

    Article  CAS  Google Scholar 

  • Ma D, Sun D, Wang C, Qin H, Ding H, Li Y, Guo T (2016) Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. J Plant Growth Regul 35:1–10

    Article  CAS  Google Scholar 

  • Maathuis FJM, Diatloff E (2013) Roles and functions of plant mineral nutrients. In: Frans Maathuis JM (ed) Plant mineral nutrients: methods and protocols, methods in molecular biology. Springer, New York

    Chapter  Google Scholar 

  • Mahdy AM, Elkhatib EA, Balba AM, Ahmed GE (2017) Speciation and fractionation of phosphorus in biosolids-amended soils: effects of water treatment residual nanoparticles. Int J Environ Sci Technol 14:1729–1738

    Article  CAS  Google Scholar 

  • Mansouri T, Golchin A, Neyestani MR (2017) The effects of hematite nanoparticles on phytoavailability of arsenic and corn growth in contaminated soils. Int J Environ Sci Technol 14:1525–1534

    Article  CAS  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, MNV P (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science + Business Media, LLC, New York, pp 1–19

    Google Scholar 

  • Martínez-Fernández D, Vítková M, Michálková Z, Komárek M (2017) Engineered nanomaterials for phytoremediation of metal/ metalloid-contaminated soils: implications for plant physiology. In: Ansari AA et al (eds) Phytoremediation. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-52381-1_14

    Chapter  Google Scholar 

  • Mastronardi E, Tsae P, Zhang X, Monreal C, De Rosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Switzerland, p 25. https://doi.org/10.1007/978-3-319-14024-7_2

    Chapter  Google Scholar 

  • Mechora Š, Čalasan AŽ, Felicijan M, Krajnc AU, Ambrožič-Dolinšek J (2017) The impact of selenium treatment on some physiological and antioxidant properties of Apium repens. Aquat Bot 138:16–23

    Article  CAS  Google Scholar 

  • Mehnaz S (2017) Rhizotrophs: plant growth promotion to bioremediation, Microorganisms for Sustainability Series, vol 2. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-4862-3

    Book  Google Scholar 

  • Meier S, Curaqueo G, Khan N, Bolan N, Cea M, Eugenia GM, Cornejo P, Ok YS, Borie F (2017) Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil. J Soils Sediments 17:741–750

    Article  CAS  Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Plant growth-promoting microbes: diverse roles in agriculture and environmental sustainability. In: Kumar V et al (eds) Probiotics and plant health. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-3473-2_4

    Chapter  Google Scholar 

  • Mitra GN (2015) Definitions of heavy metals, essential and beneficial plant nutrients. In: Mitra GN (ed) Regulation of nutrient uptake by plants: a biochemical and molecular approach. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2334-4_8

    Chapter  Google Scholar 

  • Mitra G (2017) Essential plant nutrients and recent concepts about their uptake. In: Naeem M et al (eds) Essential plant nutrients. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-58841-4_1

    Chapter  Google Scholar 

  • Mitra S, Sarkar A, Sen S (2017) Removal of chromium from industrial effluents using nanotechnology: a review. Nanotechnol Environ Eng 2:11

    Article  Google Scholar 

  • Mohammadi MH, Khataar M, Shekari F (2017) Effect of soil salinity on the wheat and bean root respiration rate at low matric suctions. Paddy Water Environ 15:639–648

    Article  Google Scholar 

  • Mosa KA, Ismail A, Helmy M (2017) Plant stress tolerance: an integrated omics approach, Springer Briefs in Systems Biology Series. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-59379-1

    Book  Google Scholar 

  • Mroczek-Zdyrska M, Strubinska J, Hanaka A (2017) Selenium improves physiological parameters and alleviates oxidative stress in shoots of lead-exposed Vicia faba L. minor plants grown under phosphorus-deficient conditions. J Plant Growth Regul 36:186–199

    Article  CAS  Google Scholar 

  • Mykhaylenko NF, Zolotareva EK (2017) The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Chlorella Vulgaris. Nanoscale Res Lett 12:147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naeem M, Ansari AA, Gill SS (2017a) Essential plant nutrients: uptake, use efficiency, and management. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-58841-4

    Book  Google Scholar 

  • Naeem M, Ansari AA, Gill SS, Aftab T, Idrees M, Ali A, Khan MMA (2017b) Regulatory role of mineral nutrients in nurturing of medicinal legumes under salt stress. In: Naeem M et al (eds) Essential plant nutrients. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-58841-4_12

    Chapter  Google Scholar 

  • Nan J, Chen X, Wang X, Lashari MS, Wang Y, Guo Z, Du Z (2016) Effects of applying flue gas desulfurization gypsum and humic acid on soil physicochemical properties and rapeseed yield of a saline sodic cropland in the eastern coastal area of China. J Soils Sediments 16:38–50

    Article  CAS  Google Scholar 

  • Nath M, Bhatt D, Prasad R, Tuteja N (2017) Reactive oxygen species (ROS) metabolism and signaling in plant-mycorrhizal association under biotic and abiotic stress conditions. In: Varma A et al (eds) Mycorrhiza – eco-physiology, secondary metabolites, nanomaterials. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-57849-1_12

    Chapter  Google Scholar 

  • Nawaz F, Ahmad R, Ashraf MY, Waraich EA, Khan SZ (2015) Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol Environ Saf 113:191–200

    Article  PubMed  CAS  Google Scholar 

  • Nedjimi B (2017) Calcium application enhances plant salt tolerance: a review. In: Naeem M et al. (eds) Essential plant nutrients. Springer International Publishing AG. Cham. doi:https://doi.org/10.1007/978-3-319-58841-4_15

    Chapter  Google Scholar 

  • Negm AM, Eltarabily MGA (2017) Modeling of fertilizer transport through soil, case study: Nile Delta. In: Negm AM (ed) The Nile Delta, vol 55. Hdb Env Chem Springer International Publishing, Cham, pp 121–158

    Chapter  Google Scholar 

  • Nikpay A, Nejadian ES, Goldasteh S, Farazmand H (2017) Efficacy of silicon formulations on sugarcane stalk borers, quality characteristics and parasitism rate on five commercial varieties. Proc Natl Acad Sci India, Sect B Biol Sci 87:289–297

    Article  CAS  Google Scholar 

  • Osman KT (2013) Plant nutrients and soil fertility management. In: Osman KT (ed) Soils: principles, properties and management. Springer, Dordrecht, pp 129–159

    Chapter  Google Scholar 

  • Ouzounidou G, Giannakoula A, Ilias I, Zamanidis P (2016) Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application. Braz J Bot 39:531–539

    Article  Google Scholar 

  • Patra AK, Adhikari T, Bhardwaj AK (2016) Enhancing crop productivity in salt-affected environments by stimulating soil biological processes and remediation using nanotechnology. In: Dagar JC et al (eds) Innovative saline agriculture. Springer India, New Delhi. https://doi.org/10.1007/978-81-322-2770-0_4

    Chapter  Google Scholar 

  • Pilon-Smits EAH, Winkel LHE, Lin ZQ (2017) Selenium in plants: molecular, physiological, ecological and evolutionary aspects, Plant Ecophysiology Series, vol 11. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-56249-0

    Book  Google Scholar 

  • Prasad KS, Patel H, Patel T, Patel K, Selvaraj K (2013) Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf B: Biointerfaces 103:261–266

    Article  PubMed  CAS  Google Scholar 

  • Prashanthi M, Sundaram R, Jeyaseelan A, Kaliannan T (2017) Bioremediation and sustainable technologies for cleaner environment, Environmental Science and Engineering Series. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-48439-6

    Book  Google Scholar 

  • Premarathna HL, McLaughlin MJ, Kirby Jason K, Hettiarachchi GM, Beak D, Stacey S, Chittleborough DJ (2010) Potential availability of fertilizer selenium in field capacity and submerged soils. Soil Sci Soc Am J 74:1589–1596. https://doi.org/10.2136/sssaj2009.0416

    Article  CAS  Google Scholar 

  • Purakayastha TJ, Mandal A, Kumari S (2017) Phytoremediation of metal- and salt-affected soils. In: Arora S et al (eds) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-48257-6_11

    Chapter  Google Scholar 

  • Qadir M, Noble AD, Schubert S, Thomas RJ, Arslan A (2006) Sodicity-induced land degradation and its sustainable management: problems and prospects. Land Degrad Dev 17:661–676

    Article  Google Scholar 

  • Qados AMA (2015) Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. Am J Exp Agric 7:78–95

    Article  Google Scholar 

  • Rameshraddy PGJ, Reddy BHR, Salimath M, Geetha KN, Shankar AG (2017) Zinc oxide nano particles increases Zn uptake, translocation in rice with positive effect on growth, yield and moisture stress tolerance. Indian J Plant Physiol. https://doi.org/10.1007/s40502-017-0303-2

  • Ramezanian BA (2013) Influence of soil amendments and soil properties on macro-and micronutrient availability to microorganisms and plants. Acta Universitatis Agriculturae Sueciae 30:1652–6880

    Google Scholar 

  • Reynolds RJB, Cappa JJ, Pilon-Smits EAH (2017) Evolutionary aspects of plant selenium accumulation. In: Pilon-Smits EAH et al (eds) Selenium in plants, plant ecophysiology 11. Springer International Publishing, Cham

    Google Scholar 

  • Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Zia-ur-Rehman M, Qayyum MF, Abbas F (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut Res 22:15416–15431

    Article  CAS  Google Scholar 

  • Rodrigues FA, Datnoff LE (2015) Silicon and plant diseases. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-22930-0

    Book  Google Scholar 

  • Saha JK, Selladurai R, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Remediation and management of polluted sites. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture, environmental chemistry for a sustainable world. Springer Nature, Singapore

    Chapter  Google Scholar 

  • Sakhonwasee S, Phingkasan W (2017) Effects of the foliar application of calcium on photosynthesis, reactive oxygen species production, and changes in water relations in tomato seedlings under heat stress. Hortic Environ Biotechnol 58:119–126

    Article  CAS  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Abdul Mujeeb M, Shrinivas J, David M, Mundaragi AC, Thimmappa SC, Arakera SB, Prasad R (2017) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R et al (eds) Nanotechnology. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-4573-8_5

    Chapter  Google Scholar 

  • Saratale RG, Saratale GD, Shin HS, Jacob JM, Pugazhendhi A, Bhaisare M, Kumar G (2017) New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-9912-6

  • Sarkar SK (2018a) Trace metals in a tropical mangrove wetland: chemical speciation, ecotoxicological relevance and remedial measures. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-2793-2

    Book  Google Scholar 

  • Sarkar SK (2018b) Phytoremediation of trace metals by mangrove plants of Sundarban Wetland. In: Sarkar SK (ed) Trace metals in a tropical mangrove wetland. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-2793-2_9

    Chapter  Google Scholar 

  • Sarwat M, Ahmad A, Abdin MZ, Ibrahim MM (2017) Stress signaling in plants: genomics and proteomics perspective. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-42183-4

    Book  Google Scholar 

  • Sattar A, Cheema MA, Abbas T, Sher A, Ijaz M, Hussain M (2017) Separate and combined effects of silicon and selenium on salt tolerance of wheat plants. Russ J Plant Physiol 64:341–348

    Article  CAS  Google Scholar 

  • Schiavon M, Lima LW, Jiang Y, Hawkesford MJ (2017) Effects of selenium on plant metabolism and implications for crops and consumers. In: Pilon-Smits EAH et al (eds) Selenium in plants, plant ecophysiology. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-56249-0_15

    Chapter  Google Scholar 

  • Schomburg L, Arnér ESJ (2017) Selenium metabolism in herbivores and higher trophic levels including mammals. In: Pilon-Smits EAH et al (eds) Selenium in plants, plant ecophysiology. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-56249-0_8

    Chapter  Google Scholar 

  • Secco D, Whelan J, Rouached H, Lister R (2017) Nutrient stress-induced chromatin changes in plants. Curr Opin Plant Biol 39:1–7

    Article  PubMed  CAS  Google Scholar 

  • Senthil-Kumar M (2017) Plant tolerance to individual and concurrent stresses. Springer (India), New Delhi. https://doi.org/10.1007/978-81-322-3706-8

    Book  Google Scholar 

  • Shahid SA, Abdelfattah MA, Taha FK (2013) Developments in soil salinity assessment and reclamation innovative thinking and use of marginal soil and water resources in irrigated agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5684-7

    Book  Google Scholar 

  • Shahzadi I, Iqbal M, Rasheed R, Ashraf MA, Perveen S, Hussain M (2017) Foliar application of selenium increases fertility and grain yield in bread wheat under contrasting water availability regimes. Acta Physiol Plant 39:173

    Article  CAS  Google Scholar 

  • Shalaby TA, Bayoumi Y, Abdalla N, Taha H, Alshaal T, Shehata S, Amer M, Domokos-Szabolcsy É, El-Ramady H (2016) Nanoparticles, soils, plants and sustainable agriculture. In: Ranjan S et al (eds) Nanoscience in food and agriculture 1, Sustainable Agriculture Reviews. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-39303-2_10

    Chapter  Google Scholar 

  • Sharma DK, Singh A (2017) Current trends and emerging challenges in sustainable management of salt-affected soils: a critical appraisal. In: Arora S et al (eds) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-48257-6_1

    Chapter  Google Scholar 

  • Shivakumar S, Bhaktavatchalu S (2017) Role of plant growth-promoting rhizobacteria (PGPR) in the improvement of vegetable crop production under stress conditions. In: Zaidi A, Khan MS (eds) Microbial strategies for vegetable production. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-54401-4_4

    Chapter  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.) Saudi J Biol Sci 21:13–17

    Article  PubMed  CAS  Google Scholar 

  • Singh RP (2017) Application of nanomaterials toward development of nanobiosensors and their utility in agriculture. In: Prasad R et al (eds) Nanotechnology. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-4573-8_14

    Chapter  Google Scholar 

  • Singh RP, Jha PN (2017) Analysis of fatty acid composition of PGPR Klebsiella sp. SBP-8 and its role in ameliorating salt stress in wheat. Symbiosis. https://doi.org/10.1007/s13199-017-0477-4

  • Singh YP, Mishra VK, Sharma DK, Singh G, Arora S, Dixit H, Cerda A (2016) Harnessing productivity potential and rehabilitation of degraded sodic lands through Jatropha based intercropping systems. Agric Ecosyst Environ 233:121–129

    Article  Google Scholar 

  • Singh SR, Joshi D, Tripathi N, Singh P, Srivastava TK (2017) Plant growth-promoting bacteria: an emerging tool for sustainable crop production under salt stress. In: Arora S et al (eds) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-48257-6_6

    Chapter  Google Scholar 

  • Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bustamante M, House JI, Sobocká J, Harper R, Pan G, West PC, Gerber JS, Clark JM, Adhya T, Scholes RJ, Scholes MC (2015) Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil 1:665–685

    Article  CAS  Google Scholar 

  • Soundararajan P, Manivannan A, Ko CH, Jeong BR (2017) Silicon enhanced redox homeostasis and protein expression to mitigate the salinity stress in Rosa hybrida ‘Rock Fire’. J Plant Growth Regul. https://doi.org/10.1007/s00344-017-9705-7

  • Srivastava N (2017) Remediation of polluted soils using hyperaccumulator plants. In: Anjum NA et al (eds) Enhancing cleanup of environmental pollutants. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-55426-6_9

    Chapter  Google Scholar 

  • Srivastava N, Mukhopadhyay M (2013) Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol. https://doi.org/10.1016/j.powtec.2013.03.050

    Article  CAS  Google Scholar 

  • Srivastava N, Mukhopadhyay M (2015) Biosynthesis and structural characterization of selenium nanoparticles using Gliocladium roseum. J Clust Sci. https://doi.org/10.1007/s10876-014-0833-y

  • Srivastava AK, Dev A, Karmakar S (2017) Nanosensors for food and agriculture. In: Ranjan S et al. (eds) Nanoscience in food and agriculture, vol 5, Sustainable Agriculture Reviews. Springer International Publishing AG. Cham, doi: https://doi.org/10.1007/978-3-319-58496-6_3

    Chapter  Google Scholar 

  • Subramanian KS, Thirunavukkarasu M (2017) Nano-fertilizers and nutrient transformations in soil. In: Ghorbanpour M et al. (eds) Nanoscience and plant–soil systems, soil biology. Springer International Publishing AG, Cham. doi:https://doi.org/10.1007/978-3-319-46835-8_11

    Chapter  Google Scholar 

  • Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-14024-7_3

    Chapter  Google Scholar 

  • Sunkar R (2017) Plant stress tolerance: methods and protocols, Methods in Molecular Biology Series Vol. 1631. Springer, New York. https://doi.org/10.1007/978-1-4939-7136-7

    Book  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2012) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14:1294

    Article  CAS  Google Scholar 

  • Swain R, Rout GR (2017) Silicon in agriculture. In: Lichtfouse E (ed) Sustainable agriculture reviews, sustainable agriculture reviews. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-58679-3_8

    Chapter  Google Scholar 

  • Tang H, Liu Y, Gong X, Zeng G, Zheng B, Wang D, Sun Z, Zhou L, Zeng X (2015) Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea L. Gaud.) under cadmium stress. Environ Sci Pollut Res 22:9999–10008

    Article  CAS  Google Scholar 

  • Tei F, Nicola S, Benincasa P (2017) Advances in research on fertilization management of vegetable crops, Advances in Olericulture Series. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-53626-2

    Book  Google Scholar 

  • Tripathi DK, Singh VP, Gangwar S, Prasad SM, Maurya JN, Chauhan DK (2014) Role of silicon in enrichment of plant nutrients and protection from biotic and abiotic stresses. In: Ahmad P et al (eds) Improvement of crops in the era of climatic changes. Springer, New York

    Google Scholar 

  • Turan M, Yildirim E, Kitir N, Unek C, Nikerel E, Ozdemir BS, Güneş A, Mokhtari NEP (2017) Beneficial role of plant growth promoting bacteria in vegetable production under abiotic stress. In: Zaidi A, Khan MS (eds) Microbial strategies for vegetable production. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-54401-4_7

    Chapter  Google Scholar 

  • Ul Hassan Z, Ali S, Rizwan M, Hussain A, Akbar Z, Rasool N, Abbas F (2017) Role of zinc in alleviating heavy metal stress. In: Naeem M et al (eds) Essential plant nutrients. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-58841-4_14

    Chapter  Google Scholar 

  • Upadhyaya H, Dutta BK, Panda SK (2017) Impact of zinc on dehydration and rehydration responses in tea. Biol Plant (in press)

    Google Scholar 

  • USGS (2017) Mineral commodity summaries. U.S. Geological Survey, p 202. doi:https://doi.org/10.3133/70180197

  • Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:5

    Article  CAS  Google Scholar 

  • Wang Q, Webster TJ (2012) Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. J Biomed Mater Res 100:3205–3210

    Article  CAS  Google Scholar 

  • Wang S, Wang F, Gao S (2015) Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ Sci Pollut Res 22:2837–2845

    Article  CAS  Google Scholar 

  • Wang S, Wang F, Gao S, Wang X (2016) Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water Air Soil Pollut 227:228

    Article  CAS  Google Scholar 

  • Wu QS (2017) Arbuscular mycorrhizas and stress tolerance of plants. Springer Nature Singapore Pte Ltd, Singapore. https://doi.org/10.1007/978-981-10-4115-0

    Book  Google Scholar 

  • Xu L, Islam F, Ali B, Pei Z, Li J, Ghani MA, Zhou W (2017) Silicon and water-deficit stress differentially modulate physiology and ultrastructure in wheat (Triticum aestivum L.). 3. Biotech 7:273

    Google Scholar 

  • Yadav R, Juneja S, Singh P, Kumar S (2017a) Drought and heat tolerance in chickpea: transcriptome and morphophysiological changes under individual and combined stress. In: Senthil-Kumar M (ed) Plant tolerance to individual and concurrent stresses. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3706-8_7

    Chapter  Google Scholar 

  • Yadav RS, Mahatma MK, Thirumalaisamy PP, Meena HN, Bhaduri D, Arora S, Panwar J (2017b) Arbuscular mycorrhizal fungi (AMF) for sustainable soil and plant health in salt-affected soils. In: Arora S et al (eds) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-48257-6_7

    Chapter  Google Scholar 

  • Zhang J, Wang X, Xu T (2008) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Se-methylselenocysteine in mice. Toxicol Sci 101:22–31

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Zhan X, Kang Y, Wan S, Feng H (2017a) Improvements of soil salt characteristics and nutrient status in an impermeable saline–sodic soil reclaimed with an improved drip irrigation while ridge planting Lycium barbarum L. J Soils Sediments 17:1126–1139

    Article  CAS  Google Scholar 

  • Zhang W, Xie Z, Wang L, Li M, Lang D, Zhang X (2017b) Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment. J Plant Res 130:611–624

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wang Y, Ding Z, Wang H, Song L, Jia S, Ma D (2017c) Zinc stress affects ionome and metabolome in tea plants. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2016.12.014

  • Zhu X, Song F, Liu F (2017) Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-4115-0_8

    Chapter  Google Scholar 

Download references

Acknowledgment

Authors thank the outstanding contribution of STDF research teams (Science and Technology Development Fund, Egypt) and MBMF/DLR (the Federal Ministry of Education and Research of the Federal Republic of Germany) (Project ID 5310) for their help. Great support from this German-Egyptian Research Fund (GERF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Ramady, H. et al. (2018). Plant Nutrients and Their Roles Under Saline Soil Conditions. In: Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B. (eds) Plant Nutrients and Abiotic Stress Tolerance. Springer, Singapore. https://doi.org/10.1007/978-981-10-9044-8_13

Download citation

Publish with us

Policies and ethics