Skip to main content
Log in

Silicon enhances the tolerance of Poa annua to cadmium by inhibiting its absorption and oxidative stress

  • Original paper
  • Published:
Biologia Plantarum

Abstract

Silicon (Si) could enhance plant tolerance to heavy metals; however, the mechanism of Si-mediated alleviation of cadmium (Cd) toxicity in Poa annua was not clear. In this study, we found that 100 μM Cd significantly inhibited the growth of Poa annua seedlings. Furthermore, Cd enhanced the H2O2 and malondialdehyde content. The activities of superoxide dismutase and ascorbate peroxidase were enhanced, but the catalase and peroxidase activities were reduced by Cd treatment. Cd also altered the activity and expression of glucose-6-phosphate dehydrogenase (G6PDH) in Poa annua roots. Application of Na3PO4, an inhibitor of G6PDH, decreased the activity of G6PDH, the expression of G6PDH, and increased the Cd toxicity, suggesting that G6PDH is involved in the regulation of oxidative stress induced by Cd. Application of 1 mM Si alleviated the inhibition of Cd on the growth of Poa annua seedlings. Si application not only led to reduced oxidative injuries but also decreased the accumulation of Cd in Poa annua seedlings under Cd stress. Furthermore, Si decreased the activity of G6PDH and the expression of G6PDH under Cd stress, which demonstrated that Si attenuates the Cd toxicity in Poa annua probably through decreasing the expression of G6PDH under Cd stress. When G6PDH was inhibited, the alleviation impact of Si on Cd stress was abolished. Taken together, these results demonstrated that the Cd tolerance in Poa annua enhanced by Si is mainly due to the decrease of Cd uptake in roots and lowering the oxidative stress induced by Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

EDTA:

ethylene diamine tetraacetic acid

G6PDH:

glucose-6-phosphate dehydrogenase

GR:

glutathione reductase

GSH:

glutathione

MDA:

malondialdehyde

MS:

Murashige and Skoog

NADPH:

nicotinamide adenine dinucleotide phosphate

OPPP:

oxidative pentose phosphate pathway

PAGE:

polyacrylamide gel electrophoresis

PEPC:

phosphoenolpyruvate carboxylase

6PGDH:

6-phosphogluconate dehydrogenase

PMSF:

phenylmethanesulfonyl fluoride

POD:

peroxidase

PVDF:

polyvinylidene fluoride

PVP:

polyvinyl pyrrolidone

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TBA:

thiobarbituric acid

TCA:

trichloroacetic acid

References

  • Ádám, A.L., Bestwick, C.S., Barna, B., Mansfield, J.W.: Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. phaseolicola. — Planta 197: 240–249, 1995.

    Article  Google Scholar 

  • Aebi, H.: Catalase in vitro. — Methods Enzymol. 105: 121–126, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Balakhnina, T.I., Matichenkov, V.V., Wlodarczyk, T., Borkowska, A., Nosalewicz, M. Fomina, I.R.: Effects of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding. — Plant Growth Regul. 67: 35–43, 2012.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Dal Corso, G., Farinati, S., Furini, A.: Regulatory networks of cadmium stress in plants. — Plant Signal Behav. 5: 663–667, 2010.

    Article  Google Scholar 

  • Dal Santo, S., Stampfl, H., Krasensky, J., Kempa, S., Gibon, Y., Petutschnig, E., Rozhon, W., Heuck, A., Clausen, T., Jonak, C.: Stress-induced GSK3 regulates the redox stress response by phosphorylating glucose-6-phosphate dehydrogenase in Arabidopsis. — Plant Cell 24: 3380–3392, 2012.

    Article  Google Scholar 

  • Esposito, S., Carfagna, S., Massaro, G., Vona, V., Di, M.R.V.: Glucose-6-phosphate dehydrogenase in barley roots: kinetic properties and localization of the isoforms. — Planta 212: 627–634, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Exley, C.: Silicon in life: a bioinorganic solution to bioorganic essentiality. — J. Inorg. Biochem. 69: 139–144, 1998.

    Article  CAS  Google Scholar 

  • Feng, J.G., Shi, Q.H., Wang, X.F., Wei, M., Yang, F.J., Xu, H.N.: Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. — Sci. Hort. 123: 521–530, 2010.

    Article  CAS  Google Scholar 

  • Gallego, S.M., Pena, L.B., Barcia, R.A., Azpilicueta, C.E., Iannone, M.F., Rosales, E.P., Zawoznik, M.S., Groppa, M.D., Benavides, M.P.: Unravelling cadmium toxicity and tolerance in plants: insights into regulatory mechanisms. — Environ. exp. Bot. 83: 33–46, 2012.

    Article  CAS  Google Scholar 

  • Graeve, K., Von Schaewen, A., Scheibe, R.: Purification, characterization, and cDNA sequence of glucose-6-phosphate dehydrogenase from potato (Solanum tuberosum L.). — Plant J. 5: 353–361, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Hodges, D.M., Delong, J.M., Forney, C.F., Prange, R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. — Planta 207: 604–711, 1999.

    Article  CAS  Google Scholar 

  • Janda, T., Szalai, G., Tari, I., Páldi, E.: Hydroponic treatment with salicylic acid decreases the effects of chilling in maize (Zea mays L) plants. — Planta 208: 175–180, 1999.

    Article  CAS  Google Scholar 

  • Khandekar, S., Leisner, S.: Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. — J Plant Physiol. 168: 699–705, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. — Nature 227: 680–685, 1970.

    Article  CAS  PubMed  Google Scholar 

  • Li, P., Song, A., Li, Z.J., Fan, F.L., Liang, Y.C.: Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). — Plant Soil 354: 407–419, 2012.

    Article  CAS  Google Scholar 

  • Lin, Y.Z., Lin, S.Z., Guo, H., Zhang, Z.Y., Chen, X.Y.: Functional analysis of PsG6PDH, a cytosolic glucose-6-phosphate dehydrogenase from Populus suaveolens, and its contribution to cold tolerance improvement in tobacco plants. — Biotechnol. Lett. 35: 1509–1518, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Yang, R., Pan, Y., Ma, M., Pan, J., Zhao, Y., Cheng, Q., Wu, M., Wang, M., Zhang, L.: Nitric oxide contributes to minerals absorption, proton pumps and hormone equilibrium under cadmium excess in Trifolium repens L. plants. — Ecotoxicol. environ. Safety 119: 35–46, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Ma, F.J., Yamaji, N.: Silicon uptake and accumulation in higher plants. — Trends Plant Sci. 11: 392–397, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Mitani, N., Ma, J.F.: Uptake system of silicon in different plant species. — J. exp. Bot. 56: 1255–1261, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., Breusegem, F.V.: Reactive oxygen gene network of plants. — Trends Plant Sci. 9: 490–498, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Y., Huang, B.R., Xu, L.X., Li, Z.: Heat stress effects on osmotic potential, membrane fatty acid composition and lipid peroxidation content of two Kentucky bluegrass cultivars differing in drought tolerance. — Acta horticult. sin. 40: 971–980, 2013.

    CAS  Google Scholar 

  • Porra, R.J., Thompson, W.A., Kriedman, P.A.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. — Biochim. biophys. Acta 975: 384–394, 1989.

    Article  CAS  Google Scholar 

  • Prochazkova, D., Sairam, R.K., Srivastava, G.C., Singh, D.V.: Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. — Plant Sci. 161: 765–771, 2001.

    Article  CAS  Google Scholar 

  • Rizwan, M., Meunier, J.D., Miche, H., Keller, C.: Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W) grown in a soil with aged contamination. — J. Hazard Mater. 209–210: 326–334, 2011.

    Google Scholar 

  • Rodríguez-Serrano, M., Romero-Puertas, M.C., Pazmiño, D.M., Testillano, P.S., Risueño, M.C., Del Rio, L.A., Sandalio, L.M.: Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. — Plant Physiol. 150: 229–243, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvemini, F., Franze, A., Iervolino, A., Filosa, S., Salzano, S., Ursini, V.: Enhanced glutathione levels and oxido resistance mediated by increased glucose-6-phosphate dehydrogenase expression. — J. biol. Chem. 274: 2750–2757, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Scharte, J., Schön, H., Tiaden, Z., Weis, E., Von Schaewen, A.: Isoenzyme replacement of glucose-6-phosphate dehydrogenase in the cytosol improves stress tolerance in plants. — PNAS 106: 8061–8066, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, S.S., Dietz, K.J.: The relationship between metal toxicity and cellular redox imbalance. — Trends Plant Sci. 14: 43–50, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Shetty, R., Jensen, B., Shetty, N.P., Hansen, M., Hansen, C.W., Starkey, K.R., Jørgensen, H.J.L.: Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa. — Plant Pathol. 61: 120–131, 2012.

    Article  CAS  Google Scholar 

  • Shi, G.R., Cai, Q.S., Liu, C.F., Wu, L.: Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. — Plant Growth Regul. 61: 45–52, 2010.

    Article  CAS  Google Scholar 

  • Slaski, J.J., Zhang, G.C., Basu, U., Stephens, J.L., Taylor, G.J.: Aluminum resistance in wheat (Triticum aestivum) is associated with rapid, Al-induced changes in activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in root apices. — Physiol. Plant. 98: 477–484, 1996.

    Article  CAS  Google Scholar 

  • Song, A., Li, P., Li, Z.J., Fan, F.L., Nikolic, M., Liang, Y.C.: The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. — Plant Soil 344: 319–333, 2011.

    Article  CAS  Google Scholar 

  • Sun, Y.B., Zhou, Q.X., Wang, L., Liu, W.T.: The influence of different growth stages and dosage of EDTA on Cd uptake and accumulation in Cd hyperaccumulator (Solanum nigrum L.). — Bull. Environ. Contam. Toxicol. 82: 348–353, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Tian, W.N., Braunstein, L.D., Pang, J., Stuhlmeier, K.M., Xi, Q.C., Tian, X., Stanton, R.C.: Importance of glucose-6-phosphate dehydrogenase activity for cell growth. — J. biol. Chem. 273: 10609–10617, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Vaculík, M., Landberg, T., Greger, M., Luxová, M., Stoláriková, M., Lux, A.: Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. — Ann. Bot. 110: 433–443, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Assche, F., Cardinaels, C., Clijsters, H.: Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose-response relations in Phaseolus vulgaris L., treated with zinc and cadmium. — Environ. Pollut. 52: 103–115, 1988.

    Article  PubMed  Google Scholar 

  • Veljovic-Jovanovic, S.D., Noctor, G., Foyer, C.H.: Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. — Plant Physiol. Biochem. 40: 501–507, 2002.

    Article  CAS  Google Scholar 

  • Wang, H.H., Yang, L.D., Li, Y., Hou, J.J., Huang, J.J., Liang, W.H.: Involvement of ABA- and H2O2-dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress. — Plant Physiol. Biochem. 107: 126–136, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Zou, J.H., Duan, X.C., Jiang, W.S., Liu, D.H.: Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). — Bioresour. Technol. 98: 82–88, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X.M., Ma, Y.Y., Huang, C.H., Wan, Q., Li, N., Bi, Y.R.: Glucose-6-phosphate dehydrogenase plays a central role in modulating reduced glutathione levels in reed callus under salt stress. — Planta 227: 611–623, 2008a.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Zhang, Y.X., Huang, Z.B., Huang, L.: Antioxidative response of metal accumulator and non-accumulator plants under cadmium stress. — Plant Soil 310: 137–149, 2008b.

    Article  CAS  Google Scholar 

  • Weber, M., Trampczynska, A., Clemens, S.: Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. — Plant Cell Environ. 29: 950–963, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Yan, H., Filardo, F., Hu, X., Zhao, X., Fu, D.: Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves. — Environ. Sci. Pollut. Res. Int. 23: 3758–69, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y.T., Fu, Z.W., Su, Y.C., Zhang, X., Li, G.Y., Guo, J.L., Que, Y.X., Xu, L.P.: A cytosolic glucose-6-phosphate dehydrogenase gene, ScG6PDH, plays a positive role in response to various abiotic stresses in sugarcane. — Sci. Rep. 4: 7090, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, C.C., Wang, L.J., Nie, Q., Zhang, W.X., Zhang, F.S.: Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). — Environ. exp. Bot. 62: 300–307, 2008.

    Article  CAS  Google Scholar 

  • Zhang, F.Q., Zhang, H.X., Wang, G.P., Xu, L.L., Shen, Z.G.: Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. — J. Hazard Mater. 168: 76–84, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Liu, J., Wang, X.M., Bi, Y.R.: Glucose-6-phosphate dehydrogenase acts as a regulator of cell redox balance in rice suspension cells under salt stress. — Plant Growth Regul. 69: 139–148, 2013.

    Article  CAS  Google Scholar 

  • Zhao, C.Z, Li, P., Wang, X.M., Li, P., Wang, X.Y., Wang, F., Wang, J.F., Chang, N., Bi Y.R.: Nitrogen deprivation induces cross-tolerance of Poa annua callus to salt stress. — Biol. Plant. 60: 543–554, 2016.

    Article  CAS  Google Scholar 

  • Zhao, L.Q., Zhang, F., Guo, J.K., Yang, Y.L., Li, B.B., Zhang, L.X.: Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. — Plant Physiol. 134: 849–857, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. R. Bi.

Additional information

Acknowledgements: This work was supported by the National Natural Science Foundation of China (31671595; 31670244), the National Program on Key Basic Research Project (2012CB026105), the Foundation of Science and Technology Program of Gansu Province (1506RJZA209), the National High Technology Research and Development Program (2007AA021401), and the Foundation of Science and Technology Program of Lanzhou City (2015-3-53).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Zhao, C.Z., Zhand, Y.Q. et al. Silicon enhances the tolerance of Poa annua to cadmium by inhibiting its absorption and oxidative stress. Biol Plant 61, 741–750 (2017). https://doi.org/10.1007/s10535-017-0731-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-017-0731-x

Additional key words

Navigation