Skip to main content

Advertisement

Log in

Selenium and nano-selenium in plant nutrition

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Selenium (Se) is a naturally occurring metalloid element which occurs nearly in all environments. Se is considered as a finite and non-renewable resource on the Earth. The common sources of Se in earth’s crust occur in association with sulfide minerals such as metal selenide, whereas it is rarely found in elemental form (Se0). While there is no evidence of Se need for higher plants, several reports show that when Se added at low concentrations, Se exerts beneficial effects on plant growth. Se may act as quasi-essential micronutrient through altering different physiological and biochemical traits. Thus, plants vary considerably in their physiological and biochemical response to Se. This review focusses on the physiological importance of Se forms as well as different Se fertilizers for higher plants, especially plant growth, uptake, transport, and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abhilash PC (2015) Managing soil resources from pollution and degradation: the need of the hour. J Clean Prod 102:550–551

    Article  Google Scholar 

  • Abhilash PC, Dubey RK (2014) Integrating aboveground–belowground responses to climate change. Curr Sci 1637–1638:12

    Google Scholar 

  • Abhilash PC, Dubey RK, Tripathi V, Srivastava P, Verma JP, Singh HB (2013a) Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives. Environ Sci Pollut Res 20:5879–5885

    Article  CAS  Google Scholar 

  • Abhilash PC, Dubey RK, Tripathi V, Srivastava P, Verma JP, Singh HB (2013b) Adaptive soil management. Curr Sci 104:1275–1276

    Google Scholar 

  • Acuña JJ, Jorquera MA, Barra PJ, Crowley DE, de la Mora M (2013) Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biol Fertil Soils 49:175–185. doi:10.1007/s00374-012-0705-2

    Article  CAS  Google Scholar 

  • Adams WJ, Toll JE, Brix KV, Tear LM, De Forest DK (2000) Site-specific approach for setting water quality criteria for selenium: differences between lotic and lentic systems. In: Proceedings mine reclamation symposium: selenium session; sponsored by Ministry of Energy and Mines, Williams Lake, British Columbia, Canada, June 21–22, 2000. http://www.deq.utah.gov/businesses/kennecott/nrd/docs/2005/Sep/sdocs/Se%20BC-Pub-site-specific-final2-rev.pdf/13.5.2013

  • Aggarwal M, Sharma S, Kaur N, Pathania D, Bhandhari K, Kaushal N, Kaur R, Singh K, Srivastava A, Nayyar H (2011) Exogenous proline application reduces phytotoxic effects of selenium by minimising oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. Biol Trace Elem Res 140(3):354–367. doi:10.1007/s12011-010-8699-9

    Article  CAS  Google Scholar 

  • Ahmed HKh (2010) Differences between some plants in selenium accumulation from supplementation soils with selenium. Agric Biol J N Am. doi:10.5251/abjna.2010.1.5.1050.1056

    Google Scholar 

  • Akbulut M, Çakır S (2010) The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem 48(2–3):160–166. doi:10.1016/j.plaphy.2009.11.001

    Article  CAS  Google Scholar 

  • Alfthan G (2014) Effects of nationwide addition of selenium to fertilizers on foods and animal and human health in Finland. In: Baňuelos GS, Lin Z-Q, Yin X (eds) Selenium in the environment and human health. Proceedings of the 3rd international conference on selenium in the environment and human health, Hefei, China, 10–14 Nov. 2013, Taylor & Francis Group, London, UK, pp 111–112

  • Alfthan G, Aspila P, Ekholm P, Eurola M, Hartikainen H, Hero H, Hietaniemi V, Root T, Salminen P, Venäläinen ER, Aro A (2011) Nationwide supplementation of sodium selenate to commercial fertilizers: history and 25-year results from the Finnish selenium monitoring program. In: Thompson B, Amoroso L (eds) Combating micronutrient deficiencies: Food-based approaches. FAO/CAB International 2010, Rome, pp: 312–337. http://www.fao.org/docrep/013/am027e/am027e.pdf. Accessed 15 Sept 2015

  • Alfthan G, Eurola M, Ekholm P, Venalainen E-R, Root T, Korkalainen K, Hartikainen H, Salminen P, Hietaniemi V, Aspila P, Pro A (2015) Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: from deficiency to optimal selenium status of the population. J Trace Elem Med Biol 31:142–147. doi:10.1016/j.jtemb.2014.04.009

    Article  CAS  Google Scholar 

  • Aslani F, Bagheri S, Julkapli NM, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. ScientificWorldJournal. doi:10.1155/2014/641759

    Google Scholar 

  • Avanasi R, Jackson WA, Sherwin B et al (2014) C60 fullerene soil sorption, biodegradation, and plant uptake. Environ Sci Technol 48:2792–2797

    Article  CAS  Google Scholar 

  • Avila FW, Yang Y, Faquin V, Ramos SJ, Guilherme LRG, Thannhauser TW, Li L (2014) Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chem 165:578–586

    Article  CAS  Google Scholar 

  • Bachiega P, Salgado JM, de Carvalho JE, Ruiz ALTG, Schwarz K, Tezotto T, Morzelle MC (2016) Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem 190:771–776

    Article  CAS  Google Scholar 

  • Ballatori N (2002) Transport of toxic metals by molecular mimicry. Environ Health Persp 110(suppl 5):689–694

    Article  CAS  Google Scholar 

  • Baňuelos GS (2014) Plants used in the phytomanagement of selenium may be useful for producing selenium-biofortified plant products. In Baňuelos GS, Lin Z-Q, Yin X (eds) Selenium in the Environment and Human Health. Proceedings of the 3rd international conference on Selenium in the environment and human health, Hefei, China, 10–14 Nov 2013, Taylor & Francis Group, London, UK, pp 129–130

  • Bañuelos GS, Lin Z-Q (2009) Development and uses of biofortified agricultural products. Taylor & Francis Group, LLC, CRC Press Group FL, Boca Raton

    Google Scholar 

  • Bañuelos GS, Arroyo I, Pickering IJ, Yang SI, Freeman JL (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608. doi:10.1016/j.foodchem.06.071 (Epub 2014 Jun 24)

    Article  CAS  Google Scholar 

  • Barker AV, Pilbeam DJ (2015) Handbook of plant nutrition, 2nd edn. CRC Press Taylor & Francis Group, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Beath OA (1982) The story of selenium in Wyoming. Bulletin No. 774, Agricultural Experiment Station, University of Wyoming, Laramie, WY, pp 1–23

  • Bhatia P, Aureli F, D’Amato M, Prakash R, Cameotra SS, Nagaraja TP et al (2013) Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chem 140:225–230. doi:10.1016/j.foodchem.2013.02.054

    Article  CAS  Google Scholar 

  • Bi D, Li F, Liu Y, Yin X (2010a) Specific nutrient fertilizers for honey peach rich in organic Se. CN 101786913

  • Bi D, Jin L, Li F, Liu Y, Yin X (2010b) Se-rich nutrient composition specific for strawberry. CN 101781144

  • Bi D, Liu S, Liu Y, Yin X (2010c) Preparation of selenium-rich Chinese cabbage using Selenium nanoparticle containing nutrient. CN 101734971

  • Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R (2015) Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol Fertil Soils. doi:10.1007/s00374-015-1039-7

    Google Scholar 

  • Boldrin PF, Faquin V, Ramos SJ, Boldrin KVF, Avila FW, Guilherme LRG (2013) Soil and foliar application of selenium in rice biofortification. J Food Compos Anal 31:238–244

    Article  CAS  Google Scholar 

  • Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36:46–58

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, Hawkesford MJ, McGrath SP, Zhao F-J, Breward N, Harriman M, Tucker M (2006) Biofortification of U.K. food crops with selenium (Se). Proc Nutr Soc 65:169–181

    Article  CAS  Google Scholar 

  • Broadley MR, Alcock J, Alford J, Cartwright P, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, McGrath SP, Meacham MC, Norman K, Mowat H, Scott P, Stroud JL, Tovey M, Tucker M, White PJ, Young SD, Zhao F-J (2010) Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 332:5–18. doi:10.1007/s11104-009-0234-4

    Article  CAS  Google Scholar 

  • Buchs B, Evangelou MWH, Winke LHE, Lenz M (2013) Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci Technol 47:2401–2407. doi:10.1021/es304940s

    Article  CAS  Google Scholar 

  • Cabañero AI, Madrid Y, Camara C (2007) Mercury–selenium species ratio in representative fish samples and their bioaccessibility by an in vitro digestion method. Biol Trace Elem Res 119:195–211

    Article  CAS  Google Scholar 

  • Cartes P, Gianfreda L, Paredes C, Mora ML (2010) The effect of seed pelletization with selenite on the yield and selenium uptake of ryegrass cultivars. In: 19th world congress of soil science, soil solutions for a changing world 1–6 August 2010, Brisbane, Australia. Published on CDROM, pp 310–313

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2009) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76(4):999–1007

    Article  CAS  Google Scholar 

  • Chen Y, Mo HZ, Hu LB, Li YQ, Chen J, Yang LF (2014a) The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa. PLoS ONE 9(10):e110901. doi:10.1371/journal.pone.0110901

    Article  CAS  Google Scholar 

  • Chen Y, Mo H-Z, Zheng M-Y, Xian M, Qi Z-Q, Li Y-Q et al (2014b) Selenium inhibits root elongation by repressing the generation of endogenous hydrogen sulfide in Brassica rapa. PLoS ONE 9(10):e110904. doi:10.1371/journal.pone.0110904

    Article  CAS  Google Scholar 

  • Cheng G, Cheng J (2010) Nanosize selenium-rich compound fertilizer for promoting longevity of house flowering plants. CN 101851136

  • Chilimba ADC, Young SD, Black CR, Meacham MC, Lammel J, Broadley MR (2012) Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crops Res 125:118–128

    Article  Google Scholar 

  • Christophersen OA, Lyons G, Haug A, Steinnes E (2013) Selenium. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, environmental pollution, vol 22. Springer Science + Business Media, Dordrecht, pp 429–463. doi:10.1007/978-94-007-4470-7_16

    Chapter  Google Scholar 

  • Chu J, Yao X, Yue Z, Li J, Zhao J (2013) The effects of selenium on physiological traits, grain selenium content and yield of winter wheat at different development stages. Biol Trace Elem Res 151:434–440. doi:10.1007/s12011-012-9575-6

    Article  CAS  Google Scholar 

  • Clark SK, Johnson TM (2010) Selenium stable isotope investigation into selenium biogeochemical cycling in a lacustrine environment: Sweitzer Lake. Colorado J Environ Qual 39:2200–2210. doi:10.2134/jeq2009.0380

    Article  CAS  Google Scholar 

  • Curtin D, Hanson R, Lindley TN, Butler RC (2006) Selenium concentration in wheat grain as influenced by method, rate, and timing of sodium selenate application. N Z J Crop Hortic Sci 34:324–339

    Article  Google Scholar 

  • De Filippis LF (2010) Biochemical and molecular aspects in phytoremediation of selenium. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer Science + Business Media, Dodrecht, pp 193–226. doi:10.1007/978-90-481-9370-7_10

    Chapter  Google Scholar 

  • de la Luz Mora M, Pinilla L, Rosas A, Cartes P (2008) Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant Soil 303(1):139–149. doi:10.1007/s11104-007-9494-z

    Article  CAS  Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1998) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–574

    Article  Google Scholar 

  • De Temmerman L, Waegeneers N, Thiry C, du Laing G, Tack F, Ruttens A (2014) Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. Sci Total Environ 468:77–82

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2009) Accumulation and distribution of selenium in some vegetable crops grown in selenate-Se treated clay loam soil. Front Agric China 3(4):366–373. doi:10.1007/s11703-009-0070-6

    Article  Google Scholar 

  • Dhillon KS, Dhillon SK (2014) Development and mapping of seleniferous soils in northwestern India. Chemosphere 99:56–63. doi:10.1016/j.chemosphere.2013.09.072

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK, Dogra R (2010) Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere 78(5):548–556. doi:10.1016/j.chemosphere.2009.11.015

    Article  CAS  Google Scholar 

  • Di Gregorio S (2008) Selenium: a versatile trace element in life and environment. In: Prasad MNV (ed) Trace elements as contaminants and nutrients. Wiley, New Jersey, pp 593–622

    Chapter  Google Scholar 

  • Diao M, Ma L, Wang J, Cui J, Fu A, Liu H-Y (2014) Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J Plant Growth Regul 33(3):671–682. doi:10.1007/s00344-014-9416-2

    Article  CAS  Google Scholar 

  • Diapari M, Sindhu A, Warkentin TD, Bett K, Taran B (2015) Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol Breed. doi:10.1007/s11032-015-0252-2

    Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:1–10

    Article  Google Scholar 

  • Djanaguiraman D, Devi DD, Shanker AK, Annie Sheeba J, Bangarusamy U (2005) Impact of selenium spray on monocarpic senescence of soybean (Glycine Max L.). Plant Soil 272(1):77–86. doi:10.1007/s11104-004-4039-1

    Article  CAS  Google Scholar 

  • Domokos-Szabolcsy E (2011) Biological effect and fortification possibilities of inorganic selenium forms in higher plants. PhD dissertation, Debrecen University

  • Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–531

    Article  CAS  Google Scholar 

  • Domokos-Szabolcsy E, Alladalla NA, Alshaal T, Sztrik A, Márton L, El-Ramady H (2014) In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance. Int J Hortic Sci 20(3–4):119–122. ISSN 1585-0404

  • Ducsay L, Ložek O (2006) Effect of selenium foliar application on its content in winter wheat grain. Plant Soil Environ 52:78–82

    CAS  Google Scholar 

  • Dwivedi S, AlKhedhairy AA, Ahamed M, Musarrat J (2013) Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel Se-bioassay. PLoS ONE 8(3):e57404. doi:10.1371/journal.pone.0057404

    Article  CAS  Google Scholar 

  • Ekanayake LJ, Thavarajah D, Vial E, Schatz B, McGee R, Thavarajah P (2015) Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity. Field Crops Res 177:9–14. doi:10.1016/j.fcr.2015.03.002

    Article  Google Scholar 

  • Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J, Ovaskainen ML (2007) Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. J Food Compos Anal 20:487–495

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Pilon-Smits EAH (2012) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14:1–10. doi:10.1111/j.1438-8677.2011.00535.x

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Cappa JJ, Fakra SC, Self J, Pilon-Smits EAH (2012) Interactions of selenium hyperaccumulators and nonaccumulators during cocultivation on seleniferous or nonseleniferous soil—the importance of having good neighbors. New Phytol 194:264–277. doi:10.1111/j.1469-8137.2011.04043.x

    Article  CAS  Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  CAS  Google Scholar 

  • El-Ramady HR, Domokos-Szabolcsy E, Marton L, Sztrik A, Gabriella A, Prokisch J, Fari M (2013) Selenium tolerance of somatic embryo derived Arundo donax L. clusters comparising two ecotypes. In: The XIX conference “Plant Breeding Scientific Days”, Book abstract pages 85–86, on March 7, 2013, Pannon University, Georgikon Faculty, Keszthely, Hungary

  • El-Ramady H, Alshaal T, Amer M, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Fári M (2014a) Soil quality and plant nutrition. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 14. Springer International Publishing, Switzerland, pp 345–447. doi:10.1007/978-3-319-06016-3_11

    Google Scholar 

  • El-Ramady H, Alshaal T, Shehata SA, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Fári M, Marton L (2014b) Plant nutrition: from liquid medium to micro-farm. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 14. Springer International Publishing, Switzerland, pp 449–508. doi:10.1007/978-3-319-06016-3_12

    Google Scholar 

  • El-Ramady H, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M (2014c) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12(4):495–510. doi:10.1007/s10311-014-0476-0

    Article  CAS  Google Scholar 

  • El-Ramady H, Abdalla N, Fári M, Domokos-Szabolcsy É (2014d) Selenium enriched vegetables as biofortification alternative for alleviating micronutrient malnutrition. Int J Hortic Sci 20(1–2):75–81. ISSN 1585-0404

  • El-Ramady HR, Abdalla NA, Alshaal TA, Elhawat N, Domokos-Szabolcsy É, Prokisch J, Sztrik A, Fári M (2014e) Nano-selenium: from in vitro to micro farm experiments. In: The international conference “Biogeochemical processes at air–soil–water interfaces and environmental protection” for the European Society for Soil Conservation, Imola–Ravenna, Italy 23–26 June 2014. doi: 10.13140/2.1.2260.4481

  • El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Faizy SE-DA, Shams MS, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Pilon-Smits EA, Domokos-Szabolcsy É (2015a) Selenium and its role in higher plants. In: Lichtfouse E et al (eds) Environmental chemistry for a sustainable world, vol 7. Springer Science + Business Media B.V., Dordrecht, pp 235–296. doi:10.1007/978-3-319-19276-5_6

    Google Scholar 

  • El-Ramady H, Domokos-Szabolcsy É, Shalaby TA, Prokisch J, Fári M (2015b) Selenium in agriculture: water, air, soil, plants, food, animals and nanoselenium. In: Lichtfouse E (ed) Environmental chemistry for a sustainable world, vol 5., CO2 sequestration, biofuels and depollutionSpringer, Berlin, pp 153–232. doi:10.1007/978-3-319-11906-9_5

    Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Sztrik A, Fári M, El-Marsafawy S, Shams MS (2015c) Selenium in soils under climate change, implication for human health. Environ Chem Lett 13(1):1–19. doi:10.1007/s10311-014-0480-4

    Article  CAS  Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, Elhenawy AS, Shams MS, Faizy SE-DA, Belal EB, Shehata SA, Ragab MI, Amer MM, Fari M, Sztrik A, Prokisch J, Selmar D, Schnug E, Pilon-Smits EAH, El-Marsafawy SM, Domokos-Szabolcsy E (2015d) Giant reed for selenium phytoremediation under changing climate. Environ Chem Lett. doi:10.1007/s10311-015-0523-5

    Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, Fári M, Prokisch J, Pilon-Smits EAH, Domokos-Szabolcsy É (2015e) Selenium phytoremediation by giant reed. In: Lichtfouse Eric, Schwarzbauer Jan, Robert Didier (eds) Environmental chemistry for a sustainable world, vol 6., Hydrogen production and remediation of carbon and pollutantsSpringer Science + Business Media B.V., Dordrecht, pp 133–198. doi:10.1007/978-3-319-19375-5_4

    Google Scholar 

  • El-Ramady H, Alshaal T, Abdalla N, Prokisch J, Sztrik A, Fári M, Domokos-Szabolcsy É (2015f) Selenium and nano-selenium biofortified sprouts using micro-farm system. In: The 4th international conference of the international society for selenium research (ISSR) on “Selenium in the Environment and Human Health”, 18–21 October 2015, Sao Paulo, Brazil

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Eurola M (2005) Twenty years of selenium fertilization. In: Proceedings September 8–9, 2005, Helsinki, Finland. Agrifood Research Reports, vol 69. MTT Agrifood Research Finland, Jokioinen

  • Eurola M, Alfthan G, Aro A, Ekholm P, Hietaniemi V, Rainio H, Rankanen R, Venalainen E-R (2003) Results of the Finnish selenium monitoring program 2000–2001. Agrifood Research Reports 36. MTT Agrifood Research Finland. ISBN 951-729-805-6

  • Fageria NK, Baligar VC, Jones CA (2011) Growth and mineral nutrition of field crops, 3rd edn., Books in soils, plants, and the environment seriesCRC Press, Boca Raton

    Google Scholar 

  • Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxid Redox Sign 14:1338–1383

    Article  CAS  Google Scholar 

  • Fan J, Wang R, Hu H, Huo G, Fu Q, Zhu J (2015) Transformation and bioavailability of selenate and selenite added to a Nicotiana tabacum L. planting soil. Commun Soil Sci Plant Anal 46:1362–1375. doi:10.1080/00103624.2015.1033544

    Article  CAS  Google Scholar 

  • Fenech M, Wu J, Graham R, Lyons G (2013) Selenium biofortified wheat. In: Preedy VR et al (eds) Handbook of food fortification and health: from concepts to public health applications, vol 1., Nutrition and healthSpringer Science + Business Media, New York, pp 349–356. doi:10.1007/978-1-4614-7076-2_27

    Chapter  Google Scholar 

  • Feng RW, Wei CY (2012) Antioxidative mechanisms on selenium accumulation in Pteris vittata L., a potential selenium phytoremediation plant. Plant Soil Environ 58(3):105–110

    CAS  Google Scholar 

  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68. doi:10.1016/j.envexpbot.2012.09.002

    Article  CAS  Google Scholar 

  • Feng T, Chen SS, Gao DQ, Liu GQ, Bai HX, Li A, Peng LX (2015) Selenium improves photosynthesis and protects photosystem II in pear (Pyrus bretschneideri), grape (Vitis vinifera), and peach (Prunus persica). Photosynthetica. doi:10.1007/s11099-015-0118-1

    Google Scholar 

  • Fernández-Martínez A, Charlet ĆL (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110. doi:10.1007/s11157-009-9145-3

    Article  CAS  Google Scholar 

  • Floor GH, Román-Ross G (2012) Selenium in volcanic environments: a review. Appl Geochem 27:517–531

    Article  CAS  Google Scholar 

  • Fordyce F (2007) Selenium geochemistry and health. Ambio 36 (1): 94–7. http://nora.nerc.ac.uk/19045/1/AMBIO_Fordycefinal.pdf

  • Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In: Selinus O et al. (eds) Essentials of medical geology: Revised Edition, British Geological Survey, pp 375–419. doi 10.1007/978-94-007-4375-5_16

  • Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra S, Marcus MA, McGrath S, van Hoewyk D et al (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153:1630–1652

    Article  CAS  Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173(3):517–525

    Article  CAS  Google Scholar 

  • Galinha C, do Carmo Freitas M, Pacheco AMG, Coutinho J, Macas B, Almeida AS (2013) Selenium supplementation of Portuguese wheat cultivars through foliar treatment in actual field conditions. J Radioanal Nucl Chem 297(2):227–231. doi:10.1007/s10967-012-2372-z

    Article  CAS  Google Scholar 

  • Galinha C, Sánchez-Martínez M, Pacheco AMG, Freitas M do C, Coutinho J, Maçãs B, Almeida AS, Pérez-Corona MT, Madrid Y, Wolterbeek HT (2015) Characterization of selenium-enriched wheat by agronomic biofortification. J Food Sci Technol 52(7):4236–4245. doi:10.1007/s13197-014-1503-7

    Article  CAS  Google Scholar 

  • Gao XY, Zhang JS, Zhang LD (2002) Hollow sphere selenium nanoparticles: their in vitro anti hydroxyl radical effect. Adv Mater 14:290–293

    Article  CAS  Google Scholar 

  • Germ M, Stibilj V, Osvald J, Kreft I (2007) Effect of selenium foliar application on chicory (Cichorium intybus L.). J Agric Food Chem 55:795–798

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater. doi:10.1038/NMAT3890

    Google Scholar 

  • Gissel-Nielsen G, Gupta UC (2004) Agronomic approaches to increase selenium concentration and food crops. In: Welch RM, Ãakmak I (eds) Impacts of agriculture on human health and nutrition, in Encyclopedia of life support systems (EOLSS). Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK. http://www.eolss.net/. Retrieved on 25 Aug 2012

  • Gojkovic Ž, Garbayo I, Gómez Ariza JL, Márová I, Vílchez C (2015) Selenium bioaccumulation and toxicity in cultures of green microalgae. Algal Res 7:106–116. doi:10.1016/j.algal.2014.12.008

    Article  Google Scholar 

  • Golubkina NA, Folmanis GE, Tananaev IG (2012) Comparative evaluation of selenium accumulation by Allium species after foliar application of selenium nanoparticles, sodium selenite and sodium selenate. Doklady Biol Sci 444:176–179. doi:10.1134/S0012496612030076

    Article  CAS  Google Scholar 

  • Gong P, Li T, Wang A, Sun F, Gu S, Yin X, Guan W (2014) Screening wheat genotypes for selenium biofortification in Brazil. In: Baňuelos GS, Lin Z-Q, Yin X (eds) Selenium in the environment and human health. Proceedings of the 3rd international conference on Selenium in the environment and human health, Hefei, China, 10–14 Nov 2013. Taylor & Francis Group, London, UK, pp 142–143

  • Gu Y, Cui R, Zhang Z, Xie Z, Pang D (2012) Ultra-small near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc 134:79–82

    Article  CAS  Google Scholar 

  • Gupta UC, MacLeod JA (1994) Effect of various sources of selenium fertilization on the selenium concentration of feed crops. Can J Soil Sci 74:285–290

    Article  CAS  Google Scholar 

  • Haghighi M, Abolghasemi R, Teixeira da Silva JA (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hortic 178:231–240. doi:10.1016/j.scienta.2014.09.006

    Article  CAS  Google Scholar 

  • Hajiboland R, Rahmat S, Aliasgharzad N, Hartikainen H (2015) Selenium-induced enhancement in carbohydrate metabolism in nodulated alfalfa (Medicago sativa L.) as related to the glutathione redox state. Soil Sci Plant Nutr. doi:10.1080/00380768.2015.1032181

    Google Scholar 

  • Hall JA, Bobe G, Vorachek WR, Gorman ME, Mosher WD, Pirelli GJ (2013) Effects of feeding selenium-enriched alfalfa hay on immunity and health of weaned beef calves. Biol Trace Elem Res 156:96–110. doi:10.1007/s12011-013-9843-0

    Article  CAS  Google Scholar 

  • Harris J, Schneberg KA, Pilon-Smits EAH (2014) Sulphur–selenium–molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta 239:479–491. doi:10.1007/s00425-013-1996-8

    Article  CAS  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318. doi:10.1016/j.jtemb.2005.02.009

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2010) Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. J Plant Sci 5:354–375

  • Hasanuzzaman M, Hossain MA, Fujita M (2012) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149(2):248–261. doi:10.1007/s12011-012-9419-4

    Article  CAS  Google Scholar 

  • Hashem HA, Hassanein RA, Bekheta MA, El-Kady FA (2013) Protective role of selenium in canola (Brassica napus L.) plant subjected to salt stress. Egypt J Exp Biol (Bot) 9(2):199–211

    Google Scholar 

  • Hawkesford MJ, Barraclough P (2011) The molecular and physiological basis of nutrient use efficiency in crops. Wiley, London

    Book  Google Scholar 

  • Hawkesford MJ, Kopriva S, De Kok LJ (2014) Nutrient use efficiency in plants concepts and approaches. Springer International Publishing, Switzerland. doi:10.1007/978-3-319-10635-9

    Google Scholar 

  • Hawrylak-Nowak B (2013) Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul. doi:10.1007/s10725-013-9788-5

    Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Pogorzelec M (2015) The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol Plant 37:41. doi:10.1007/s11738-015-1788-9

    Article  CAS  Google Scholar 

  • He Z, Zhang H (2014) Applied manure and nutrient chemistry for sustainable agriculture and environment. Springer, London. doi:10.1007/978-94-017-8807-6

    Book  Google Scholar 

  • Hero H (2005) Technical solution adding selenium to fertilizers. In: Proceedings, twenty years of selenium fertilization, September 8–9, 2005, Helsinki, Finland. In: Eurola M (ed) Agrifood research reports, vol 69. MTT Agrifood Research Finland, Jokioinen, pp 16–17

  • Hladun KR, Parker DR, Tran KD, Trumble JT (2013) Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.). Environ Pollut 172:70–75. doi:10.1016/j.envpol.2012.08.009

    Article  CAS  Google Scholar 

  • Hnain A, Brooks J, Lefebvre DD (2013) The synthesis of elemental selenium particles by Synechococcus leopoliensis. Appl Microbiol Biotechnol 97:10511–10519. doi:10.1007/s00253-013-5304-0

    Article  CAS  Google Scholar 

  • Hu MH, Yuan JH (2015) Changes in the spectral pattern of selenium accumulation in Coleus blumei and the effects of chelation. Ecotoxicology 24(3):686–699. doi:10.1007/s10646-014-1415-3

    Article  CAS  Google Scholar 

  • Hu Q, Li H, Guo F, Lu C, Xin Z, Zhu S, Li F, Fang Y (2008) Method for preparing nanoscale Se-rich green tea with antitumor activity. CN 101142951

  • Hu Y, Norton GJ, Duan G, Huang Y, Liu Y (2014) Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants. Plant Soil 384(1–2):131–140. doi:10.1007/s11104-014-2189-3

    Article  CAS  Google Scholar 

  • Hu X, Dong W, Liu R (2015) Effects of the addition of selenium on trace element concentrations in Danshen (Salvia miltiorrhiza). Anal Lett 48(3):513–525. doi:10.1080/00032719.2014.947536

    Article  CAS  Google Scholar 

  • Huang B, Zhang J, Hou J, Chen C (2003) Free radical scavenging efficiency of nano-Se in vitro. Free Radic Biol Med 35:805–813. doi:10.1016/S0891-5849(03)00428-3

    Article  CAS  Google Scholar 

  • Husen A, Siddiqi KS (2014) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12:28

    Article  CAS  Google Scholar 

  • Ibrahim HM (2014) Selenium pretreatment regulates the antioxidant defense system and reduces oxidative stress on drought-stressed wheat (Triticum aestivum L.) plants. Asian J Plant Sci 13:120–128. doi:10.3923/ajps.2014.120.128

    Article  Google Scholar 

  • Ibrahim HIM, Al-Wasfy MM (2014) The promotive impact of using silicon and selenium with potassium and boron on fruiting of Valencia orange trees under Minia region conditions. World Rural Obs 6(2):28–36

    Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4(165):1–7. doi:10.4172/2157-7439.1000165

    Google Scholar 

  • Iqbal M, Hussain I, Liaqat H, Arslan Ashraf M, Rasheed Rizwan, Rehman Aziz Ur (2015a) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol Biochem 94:95–103

    Article  CAS  Google Scholar 

  • Iqbal M, Khan R, Nazir F, Asgher M, Per TS, Khan NA (2015b) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    Article  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    Article  CAS  Google Scholar 

  • Jain R, Verma R, Singh A, Chandra A, Solomon S (2015) Influence of selenium on metallothionein gene expression and physiological characteristics of sugarcane plants. Plant Growth Regul. doi:10.1007/s10725-015-0042-1

    Google Scholar 

  • Ježek P, Škarpa P, Lošák T, Hlušek J, Jůzl M, Elzner P (2012) Selenium—an important antioxidant in crops biofortification. In: El-Missiry MA (ed) Antioxidant enzyme. ISBN 978-953-51-0789-7. doi: 10.5772/50356

  • Jiang C, Zheng Q, Liu Z, Xu W, Liu L, Zhao G et al (2012) Overexpression of Arabidopsis thaliana Na+/H+ antiporter gene enhanced salt resistance in transgenic poplar (Populus × euramericana ‘Neva’). Trees 26(3):685–694. doi:10.1007/s00468-011-0635-x

    Article  CAS  Google Scholar 

  • Jiang C, Zu C, Shen J, Shao F, Li T (2015) Effects of selenium on the growth and photosynthetic characteristics of flue-cured tobacco (Nicotiana tabacum L.). Acta Soc Bot Pol 84(1):71–77. doi:10.5586/asbp.2015.006

    Article  Google Scholar 

  • Jones JB Jr (2012) Plant nutrition and soil fertility manual, 2nd edn. CRC Press Taylor & Francis Group FL, Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  • Kabata-Pendias E (2011) Trace elements in soils and plants, 4th edn. CRC Press Taylor & Francis Group, Boca Raton, FL, Taylor and Francis Group, LLC, Boca Raton

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Kápolna E, Fodor P (2006) Speciation analysis of selenium enriched green onions (Allium fistulosum) by HPLC–ICP-MS. Microchem J 84:56–62

    Article  CAS  Google Scholar 

  • Kápolna E, Hillestrøm PR, Laursen KH, Husted S, Larsen EH (2009) Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chem 115:1357–1363. doi:10.1016/j.foodchem.2009.01.054

    Article  CAS  Google Scholar 

  • Kápolna E, Laursen KH, Husted S, Larsen EH (2012) Bio-fortification and isotopic labelling of Se metabolites in onions and carrots following foliar application of Se and 77Se. Food Chem 133:650–657. doi:10.1016/j.foodchem.2012.01.043

    Article  CAS  Google Scholar 

  • Kapoor R, Nasim SA, Dhir B, Mahmooduzzafar, Mujib A (2012) Selenium treatment alters phytochemical and biochemical activity of in vitro-grown tissues and organs of Allium sativum L. In Vitro Cell Dev Biol Plant 48:411–416. doi:10.1007/s11627-012-9456-x

    Article  CAS  Google Scholar 

  • Kertesz MA, Frossard E (2015) Biological cycling of inorganic nutrients and metals in soils and their role in soil biogeochemistry. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry, 4th edn. Academic Press, Elsevier Inc., Oxford, pp 471–504. doi:10.1016/B978-0-12-415955-6.00016-5

    Google Scholar 

  • Keskinen R, Turakainen M, Hartikainen H (2010) Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass. Plant Soil 333:301–313. doi:10.1007/s11104-010-0345-y

    Article  CAS  Google Scholar 

  • Khiralla GM, El-Deeb BA (2015) Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT—Food Sci Technol. doi:10.1016/j.lwt.2015.03.086

    Google Scholar 

  • Kieliszek M, Blazejak S (2013) Selenium: significance, and outlook for supplementation. Nutrition 29:713–718. doi:10.1016/j.nut.2012.11.012

    Article  CAS  Google Scholar 

  • Kikkert J, Berkelaar E (2013) Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environ Contam Toxicol 65:458–465

    Article  CAS  Google Scholar 

  • Kim HK (2011) Method for cultivating high-quality high-functionality fruit and vegetables. KR 1120635

  • Kimura H, Arima T-H, Okamura Y, Oku T, Sakaguchi T (2014) Selenium recovery and conversion by a filamentous fungus, Aspergillus oryzae strain RIB40. Asia Pac J Sustain Agric Food Energy 2(2):5–8

    Google Scholar 

  • Kong L, Yuan Q, Zhu H, Li Y, Guo Q, Wang Q, Bi X, Gao X (2011) The suppression of prostate LNCaP cancer cells growth by selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials 32:6515–6522

    Article  CAS  Google Scholar 

  • Lamon L, Valle MD, Critto A, Marcomini A (2009) Introducing an integrated climate change perspective in POPs modelling and regulation. Environ Pollut 157:1971–1980

    Article  CAS  Google Scholar 

  • Lavu RVS, Du Laing G, Van De Wiele T, Pratti VL, Willekens K, Vandecasteele B, Tack F (2012) Fertilizing soil with selenium fertilizers: impact on concentration, speciation, and bioaccessibility of selenium in leek (Allium ampeloprasum). J Agric Food Chem 60:10930–10935. doi:10.1021/jf302931z

    Article  CAS  Google Scholar 

  • Lazo-Vélez MA, Chávez-Santoscoy A, Serna-Saldivar SO (2015) Selenium-enriched breads and their benefits in human nutrition and health as affected by agronomic, milling, and baking factors. Cereal Chem 92(2):134–144. doi:10.1094/CCHEM-05-14-0110-RW

    Article  CAS  Google Scholar 

  • Lee JH, Lee EM, Kim GJ, Jeong IH, Cho YG (2007) Gardening Fertilizer containing stevia extract and minerals and preparation method thereof by using fermented stevia extract as penetration accelerator for functional material. KR 1020060046653

  • Lee K, Hong S-B, Lee J, Chung J, Hur S-D, Hong S (2015) Seasonal variation in the input of atmospheric selenium to northwestern Greenland snow. Sci Total Environ 526:49–57. doi:10.1016/j.scitotenv.2015.04.082

    Article  CAS  Google Scholar 

  • Li F (2007) Selenium potassium phosphate composite and applications thereof. CN 101016218

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178(1):92–102. doi:10.1111/j.1469-8137.2007.02343.x

    Article  CAS  Google Scholar 

  • Li T, Wang A, Gong P, Gu S, Yuan L, Li F, Yin X, Guan W (2014) Microbial-enhanced selenium biofortification of wheat (Triticum aestivum L.). In: Baňuelos GS, Lin Z-Q, Yin X (eds) Selenium in the environment and human health. Proceedings of the 3rd international conference on Selenium in the environment and human health, Hefei, China, 10–14 Nov 2013. Taylor & Francis Group, London, UK, pp: 138-139

  • Li J, Liang D, Qin S, Feng P, Wu X (2015a) Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions. Environ Sci Pollut Res Int 22(14):11076–11086. doi:10.1007/s11356-015-4344-7

    Article  CAS  Google Scholar 

  • Li S, Bañuelos GS, Min J, Shi W (2015b) Effect of continuous application of inorganic nitrogen fertilizer on selenium concentration in vegetables grown in the Taihu Lake region of China. Plant Soil 393:351–360. doi:10.1007/s11104-015-2496-3

    Article  CAS  Google Scholar 

  • Li K-E, Chang Z-Y, Shen C-X, Yao N (2015c) Toxicity of nanomaterials to plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences nanoparticles and their impact on plants. Springer International Publishing, Switzerland, pp 101–123. doi:10.1007/978-3-319-14502-6

    Google Scholar 

  • Lin Z-Q (2011) Biogenic volatilization of selenium in soil and plant systems. In: Bañuelos GS, Lin Z-Q, Yin X, Duan N (eds) Selenium: global perspectives of impacts on humans, animals and the environment. University of Science and Technology of China Press, Hefei, pp 11–12. ISBN 978-7-312-02929-5

    Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    Article  CAS  Google Scholar 

  • Lindblom SD, Valdez-Barillas JR, Fakra SC, Marcus MA, Wangeline AL, Pilon-Smits EAH (2012) Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ Exp Bot. doi:10.1016/j.envexpbot.2011.12.011

    Google Scholar 

  • Lindblom SD, Valdez-Barillas JR, Fakra S, Marcus MA, Wangeline AL, Pilon-Smits EAH (2013) Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ Exp Bot 88:33–42. doi:10.1016/j.envexpbot.2011.12.011

    Article  CAS  Google Scholar 

  • Liu Y, Li F, Yin XB, Lin ZQ (2011) Plant-based biofortification: from phytoremediation to Se-enriched agriculture products. In: Sharma SK, Mudhoo A (eds) Green chemistry for environmental sustainability. CRC Press, Boca Raton, pp 341–356

    Google Scholar 

  • Liu X, Zhao Z, Duan B, Hu C, Zhao X, Guo Z (2015a) Effect of applied sulphur on the uptake by wheat of selenium applied as selenite. Plant Soil 386(1):35–45. doi:10.1007/s11104-014-2229-z

    Article  CAS  Google Scholar 

  • Liu X, Q-l Wang B-H, Duan Y-m, Lin X-h Zhao, Cheng-xiao Hu, Zhao Z-q (2015b) Effects of selenite addition on selenium absorption, root morphology and physiological characteristics of rape seedlings. Chin J Appl Ecol 26(7):2050–2056

    Google Scholar 

  • Longchamp M, Castrec-Rouelle M (2014) Uptake of selenate versus selenite in Zea mays: biofortification of crops and forage. In: Baňuelos GS, Z-Q Lin, Yin X (eds) Selenium in the environment and human health. Proceedings of the 3rd international conference on selenium in the environment and human health, Hefei, China, 10–14 Nov 2013, Taylor & Francis Group, London, UK, pp 118–119

  • Longchamp M, Angeli N, Castrec-Rouelle M (2013) Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil 362:107–117. doi:10.1007/s11104-012-1259-7

    Article  CAS  Google Scholar 

  • Longchamp M, Castrec-Rouelle M, Biron P, Bariac T (2015) Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chem 182:128–135. doi:10.1016/j.foodchem.2015.02.137

    Article  CAS  Google Scholar 

  • Lugtenberg B (2015) Principles of plant–microbe interactions: microbes for sustainable agriculture. Springer International Publishing, Switzerland. doi:10.1007/978-3-319-08575-3

    Book  Google Scholar 

  • Lyons G (2010) Selenium in cereals: improving the efficiency of agronomic biofortification in the UK. Plant Soil 332:1–4. doi:10.1007/s11104-010-0282-9

    Article  CAS  Google Scholar 

  • Lyons GH, Stangoulis JCR, Graham RD (2005) Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels. Plant Soil 270:179–188. doi:10.1007/s11104-004-1390-1

    Article  CAS  Google Scholar 

  • Lyubenova L, Sabodash X, Schröder P, Michalke B (2015) Selenium species in the roots and shoots of chickpea plants treated with different concentrations of sodium selenite. Environ Sci Pollut Res. doi:10.1007/s11356-015-4755-5

    Google Scholar 

  • Maathuis FJM (2013) Plant mineral nutrients: methods and protocols., Methods in molecular biology seriesSpringer Science + Business Media, London LLC. doi:10.1007/978-1-62703-152-3

    Book  Google Scholar 

  • Madaan N, Mudgal V (2011) Phytotoxic effect of selenium on the accessions of wheat and safflower. Res J Environ Sci 5:82–87. doi:10.3923/rjes.2011.82.87

    Article  CAS  Google Scholar 

  • Malagoli M, Schiavon M, Dall’Acqua S, Pilon-Smits EAH (2015) Effects of selenium biofortification on crop nutritional quality. Front Plant Sci 6:1–5. doi:10.3389/fpls.2015.00280

    Article  Google Scholar 

  • Marmiroli N, Maestri E (2008) Health implications of trace elements in the environment and the food chain. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, London, pp 23–53

    Chapter  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Martin RC, MacRae R (2014) Managing energy, nutrients, and pests in organic field crops., Integrative studies in water management and land development seriesCRC PressTaylor & Francis Group, FL, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Mastronardi E, Tsae P, Zhang X, Monreal C, De Rosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Switzerland, p 25. doi:10.1007/978-3-319-14024-7_2

    Google Scholar 

  • McGrath JM, Spargo J, Penn CJ (2014a) Soil fertility and plant nutrition. In: Van Alfen NK (ed) Encyclopedia of agriculture and food systems. Academic Press, Elsevier Inc, Oxford, pp 166–184

    Chapter  Google Scholar 

  • McGrath SP, Poblaciones MJ, Rodrigo SM (2014b) Biofortification of field crops with selenium in Mediterranean conditions. In: Baňuelos GS, Lin Z-Q, Yin X (eds) Selenium in the environment and human health. Proceedings of the 3rd international conference on Selenium in the environment and human health, Hefei, China, 10–14 Nov 2013. Taylor & Francis Group, London, UK, pp 115–116

  • Mechora S, Stibilj V, Kreft I, Germ M (2014) The physiology and biochemical tolerance of cabbage to Se(VI) addition to the soil and by foliar spraying. J Plant Nutr 37(13):2157–2169. doi:10.1080/01904167.2014.920375

    Article  CAS  Google Scholar 

  • Mechora S, Stibilj V, Germ M (2015) Response of duckweed to various concentrations of selenite. Environ Sci Pollut Res 22:2416–2422. doi:10.1007/s11356-014-3270-4

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Principles of plant nutrition, 2nd edn. International Potash Institute, Berne

    Book  Google Scholar 

  • Mennini T (2012) Elemental selenium nanoparticles with reduced toxicity. Nutrafoods 11:N25–N26

    Article  Google Scholar 

  • Mikkelsen RL, Page AL, Bingham FT (1989) Factors affecting selenium accumulation by agricultural crops. In: Selenium in agriculture and the environment, Soil Science Society American Journal, Special Publication 23, pp 65–94

  • Miraglia M, Marvin HJ, Kleter GA, Battilani P, Brera C, Coni E (2009) Climate change and food safety: an emerging issue with special focus on Europe. Food Chem Toxicol 47:1009–1021

    Article  CAS  Google Scholar 

  • Mitra GN (2015) Regulation of nutrient uptake by plants: a biochemical and molecular approach. Springer, New Delhi. doi:10.1007/978-81-322-2334-4

    Book  Google Scholar 

  • Molnárová M, Fargašová A (2009) Se (IV) phytotoxicity for monocotyledonae cereals (Hordeum vulgare L., Triticum aestivum L.) and dicotyledonae crops (Sinapis alba L., Brassica napus L.). J Hazard Mater 172(2–3):854–861. doi:10.1016/j.jhazmat.2009.07.096

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Lens PNL (2015a) Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev 79:61–80

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Lens PNL (2015b) Selenium biomineralization for biotechnological applications. Trends Biotechnol 33(6):323–330

    Article  CAS  Google Scholar 

  • Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141. doi:10.1016/j.scitotenv.2008.06.024

    Article  CAS  Google Scholar 

  • Nawaz F, Ashraf MY, Ahmad R, Waraich EA, Shabbir RN (2014) Selenium (Se) regulates seedling growth in wheat under drought stress. Adv Chem. doi:10.1155/2014/143567

    Google Scholar 

  • Nawaz F, Ahmad R, Ashraf MY, Waraich EA, Khan SZ (2015) Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol Environ Saf 113:191–200. doi:10.1016/j.ecoenv.2014.12.003

    Article  CAS  Google Scholar 

  • Naz FS, Yusuf M, Khan TA, Fariduddin Q, Ahmad A (2015) Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica juncea plants. Food Chem 185:441–448. doi:10.1016/j.foodchem.2015.04.016

    Article  CAS  Google Scholar 

  • Ning N, Yuan XY, Dong SQ, Wen YY, Gao ZP, Guo MJ, Py G (2015) Increasing selenium and yellow pigment concentrations in foxtail millet (Setaria italica L) grain with foliar application of selenite. Biol Trace Elem Res. doi:10.1007/s12011-015-0440-2

    Google Scholar 

  • Niu Y, Qin A, Song W, Wang M, Gu X, Zhang Y, Yu M, Zhao X, Dai M, Yan L, Li Z, Fan Y (2012) Biocompatible single-crystal selenium nanobelt based nanodevice as a temperature-tunable photosensor. J Nanomater 2012:1–6

    Google Scholar 

  • Oraghi-Abdebili Z, Oraghi Ardebili N, Jalili S, Safiallah S (2015) The modified qualities of basil plants by selenium and/or ascorbic acid. Turk J Bot 39:401–407. doi:10.3906/bot-1404-20

    Article  CAS  Google Scholar 

  • Pandey C, Gupta M (2015) Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mater 287:384–391

    Article  CAS  Google Scholar 

  • Paul EA (2015) Soil microbiology, ecology, and biochemistry, 4th edn. Academic Press, Elsevier Inc., Oxford

    Google Scholar 

  • Peng D, Zhang J, Liu Q, Taylor EW (2007) Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem 101(10):1475–1563

    Article  CAS  Google Scholar 

  • Pezzarossa B, Remorini D, Gentile ML, Massai R (2012) Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J Sci Food Agric 92:781–786

  • Pilon-Smits EAH (2013) Plant selenium metabolism: genetic manipulation, phytotechnological applications, and ecological implications. In: Wong MH (ed) Environmental contamination health risks and ecological restoration. CRC Press Taylor & Francis Group, LLC, FL, Boca Raton, pp 295–312

    Google Scholar 

  • Pilon-Smits EAH (2015) Selenium in plants. In: Luttge U, Beyschlag W (eds) Progress in botany, vol 76. Springer International Publishing, Switzerland, pp 93–107. doi:10.1007/978-3-319-08807-5_4

    Google Scholar 

  • Pilon-Smits EA, Le Duc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20(2):207–212

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Quinn CF (2010) Selenium metabolism in plants. In: Hell R, Mendel PR (eds) Cell biology of metals and nutrients. Plant Cell Monographs 17. Springer, Heidelberg, pp 225–251

    Chapter  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Bañuelos GS, Parker DR (2014) Uptake, metabolism and volatilization of selenium by terrestrial plants. In: Chang AC, Brawer Silva D (eds) Salinity and drainage in San Joaquin Valley, California: science, technology, and policy, global issues in water policy, vol 6. Springer Science + Business Media, Dordrecht, pp 147–164. doi:10.1007/978-94-007-6851-2_6

    Chapter  Google Scholar 

  • Plant JA, Bone J, Voulvoulis N, Kinniburgh DG, Smedley PL, Fordyce FM, Klinck B (2014) Arsenic and selenium. In: Turekian KH, Holland HD (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 13–57

    Chapter  Google Scholar 

  • Poblaciones MJ, Rodrigo SM, Santamaría O (2013) Evaluation of the potential of peas (Pisum sativum L.) to be used in selenium biofortification programs under Mediterranean conditions. Biol Trace Elem Res 151:132–137

    Article  CAS  Google Scholar 

  • Poblaciones MJ, Rodrigo S, Santamaría O, Chen Y, McGrath SP (2014) Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: from grain to cooked pasta. Food Chem 146:378–384. doi:10.1016/j.foodchem.2013.09.070

    Article  CAS  Google Scholar 

  • Prabha D, Sivakumar S, Subbhuraam CV, Son HK (2015) Responses of Portulaca oleracea Linn. to selenium exposure. Toxicol Indus Health 31(5):412–421. doi:10.1177/0748233713475502

    Article  CAS  Google Scholar 

  • Prasad KS, Vyas P, Prajapati V, Patel P, Selvaraj K (2012) Biomimetic synthesis of selenium nanoparticles using cell-free extract of Microbacterium sp. ARB05. Micro Nano Lett 17:1–4

    Article  CAS  Google Scholar 

  • Prasad KS, Patel H, Patel T, Patel K, Selvaraj K (2013) Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf B Biointerfaces 103:261–266. doi:10.1016/j.colsurfb.2012.10.029

    Article  CAS  Google Scholar 

  • Premarathna HL, McLaughlin MJ, Kirby Jason K, Hettiarachchi GM, Beak D, Stacey S, Chittleborough DJ (2010) Potential availability of fertilizer selenium in field capacity and submerged soils. Soil Sci Soc Am J 74:1589–1596. doi:10.2136/sssaj2009.0416

    Article  CAS  Google Scholar 

  • Price NL, Thompson PA, Harrison PJ (1987) Selenium: an essential element for growth of the coastal marine diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 23:1–9. doi:10.1111/j.1529-8817.1987.tb04493.x

    Article  CAS  Google Scholar 

  • Qing X, Zhao X, Hu C, Wang P, Zhang Y, Zhang X, Wang P, Shi H, Jia F, Qu C (2015) Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves. Ecotoxicol Environ Saf 114:179–189

    Article  CAS  Google Scholar 

  • Quinn CF, Freeman JL, Reynolds RJB, Cappa JJ, Fakra SC, Marcus MA, Lindblom SD, Quinn EK, Bennett LE, Pilon-Smits EAH (2010) Selenium hyperaccumulation offers protection from cell disruptor herbivores. Plant Physiol 153:1630–1652

    Article  CAS  Google Scholar 

  • Rahman MM, Erskine W, Zaman MS, Thavarajah P, Thavarajah D, Siddique KHM (2013) Selenium biofortification in lentil (Lens culinaris Medikus subsp. culinaris): farmers’ field survey and genotype × environment effect. Food Res Int 54(2):1596–1604. doi:10.1016/j.foodres.2013.09.008

    Article  CAS  Google Scholar 

  • Rakshit A, Singh HB, Sen A (2015) Nutrient use efficiency: from basics to advances. Springer, New Delhi. doi:10.1007/978-81-322-2169-2

    Google Scholar 

  • Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268

    Article  CAS  Google Scholar 

  • Reeder RJ, Schoonen MAA, Lanzirotti A (2006) Metal speciation and its role in bioaccessibility and bioavailability. In: Sahai N, Schoonen MAA, Skinner HCW (eds) The emergent field of medical mineralogy and geochemistry. Mineralogical Society of America and the Geochemical Society, USA, pp 59–113

    Google Scholar 

  • Reilly C (2006) Selenium in food and health, 2nd edn. Springer Science + Business Media, LLC, Dodretch

    Google Scholar 

  • Reis AR, Guilherme LRG, Moraes MF, Ramos SJ (2014) High-selenium upland rice: agronomic biofortification strategies to improve human nutrition. In: Baňuelos GS, Z-Q Lin, Yin X (eds) Selenium in the environment and human health. Proceedings of the 3rd international conference on selenium in the environment and human health, Hefei, China, 10–14 Nov 2013. Taylor & Francis Group, London, pp 113–114

  • Rengel Z (2013) Improving water and nutrient use efficiency in food production systems. Wiley, London

    Book  Google Scholar 

  • Ríos JJ, Blasco B, Cervilla LM, Rosales MA, Sanchez-Rodriguez E, Romero L, Ruiz JM (2009) Production and detoxification of H2O2 in lettuce plants exposed to selenium. Ann Appl Biol 154:107–116

    Article  CAS  Google Scholar 

  • Robel I, Subramanian V, Kuno M, Kamat PV (2006) Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc 128:2385–2393

    Article  CAS  Google Scholar 

  • Rouached H (2013) Recent developments in plant zinc homeostasis and the path toward improved biofortification and phytoremediation programs. Plant Signal Behav 8(1):e22681. doi:10.4161/psb.22681

    Article  CAS  Google Scholar 

  • Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J Plant Physiol 171(5):85–91

    Article  CAS  Google Scholar 

  • Santos S, Ungureanu G, Boaventura R, Botelho C (2015) Selenium contaminated waters: an overview of analytical methods, treatment options and recent advances in sorption methods. Sci Total Environ 521–522:246–260

    Article  CAS  Google Scholar 

  • Sarkar J, Dey P, Saha S, Acharya K (2011) Mycosynthesis of selenium nanoparticles. Micro Nano Lett 8:599–602. doi:10.1049/mnl.2011.0227

    Article  CAS  Google Scholar 

  • Sarkar J, Saha S, Dey P, Acharya K (2012) Production of selenium nanorods by phytopathogen, Alternaria Alternata. Adv Sci Lett 5:1–4. doi:10.1166/asl.2012.2137

    Article  CAS  Google Scholar 

  • Sasidharan S, Balakrishnaraja R (2014) Comparison studies on the synthesis of selenium nanoparticles by various micro-organisms. Int J Pure App Biosci 2(1):112–117

    Google Scholar 

  • Schiavon M, Pilon M, Malagoli M, Pilon-Smits EA (2015) Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation—a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Front Plant Sci 6:1–13. doi:10.3389/fpls.2015.00002

    Article  Google Scholar 

  • Seppänen MM, Kontturi J, Heras IL, Madrid Y, Camara C, Hartikainen H (2010) Agronomic biofortification of Brassica with selenium: enrichment of SeMet and its identification in Brassica seeds and meal. Plant Soil 337:273–283

    Article  CAS  Google Scholar 

  • Servin A, Elmer W, Mukherjee A, De La Torre-Roche R, Hamdi H, White JC, Bindraban PS, Dimkpa CO (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92

    Article  CAS  Google Scholar 

  • Sharma G, Sharma AR, Bhavesh R, Park J, Ganbold B, Nam J-S, Lee S-S (2014a) Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (Raisin) extract. Molecules 19:2761–2770. doi:10.3390/molecules19032761

    Article  CAS  Google Scholar 

  • Sharma S, Kaur N, Kaur S, Nayyar H (2014b) Ascorbic acid reduces the phytotoxic effects of selenium on rice (Oryza Sativa L.) by up-regulation of antioxidative and metal-tolerance mechanisms. J Plant Physiol. doi:10.4172/2329-955X.1000128

    Google Scholar 

  • Sharma S, Goyal R, Sandana US (2014c) Selenium accumulation and antioxidant status of rice plants grown on seleniferous soil from northwestern India. Rice Sci 21(6):327–334. doi:10.1016/S1672-6308(14)60270-5

    Article  Google Scholar 

  • Sharma VK, McDonald TJ, Sohn M, Anquandah GAK, Pettine M, Zboril R (2015) Biogeochemistry of selenium: a review. Environ Chem Lett 13:49–58. doi:10.1007/s10311-014-0487-x

    Article  CAS  Google Scholar 

  • Singh N, Saha P, Rajkumar K, Abraham J (2014) Biosynthesis of silver and selenium nanoparticles by Bacillus sp JAPSK2 and evaluation of antimicrobial activity. Der Pharm Lett 6(1):175–181

    CAS  Google Scholar 

  • Smoleń S, Kowalska I, Sady W (2014) Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Sci Hortic 166:9–16. doi:10.1016/j.scienta.2013.11.011

    Article  CAS  Google Scholar 

  • Sonkusre P, Nanduri R, Gupta P, Cameotra SS (2014) Improved extraction of intracellular biogenic selenium nanoparticles and their specificity for cancer chemoprevention. J Nanomed Nanotechnol 5(2):1–9. doi:10.4172/2157-7439.1000194

    Article  CAS  Google Scholar 

  • Sonneveld C, Voogt W (2009) Plant nutrition of greenhouse crops. Springer Science + Business Media B.V, Dodretch

    Book  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389. doi:10.1007/s11120-005-5222-9

    Article  CAS  Google Scholar 

  • Srivastava N, Mukhopadhyay M (2013) Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol. doi:10.1016/j.powtec.2013.03.050

    Google Scholar 

  • Srivastava N, Mukhopadhyay M (2015) Biosynthesis and structural characterization of selenium nanoparticles using Gliocladium roseum. J Clust Sci. doi:10.1007/s10876-014-0833-y

    Google Scholar 

  • Stadlober M, Sager M, Irgolic KJ (2001) Effects of selenate supplemented fertilisation on the selenium level of cereals—identification and quantification of selenium compounds by HPLC-ICP-MS. Food Chem 73:357–366

    Article  CAS  Google Scholar 

  • Stroud JL, Broadley MR, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, Mowat H, Norman K, Scott P, Tucker M, White PJ, McGrath SP, Zhao FJ (2010) Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant Soil 332:19–30. doi:10.1007/s11104-009-0229-1

    Article  CAS  Google Scholar 

  • Stüeken EE, Buick R, Bekker A, Catling D, Foriel J, Guy BM, Kah LC, Machel HG, Montañez IP, Poulton SW (2015) The evolution of the global selenium cycle: secular trends in Se isotopes and abundances. Geochim Cosmochim Acta 162:109–125. doi:10.1016/j.gca.2015.04.033

    Article  CAS  Google Scholar 

  • Talukdar D (2013) Selenium priming selectively ameliorates weed: induced phytotoxicity by modulating antioxidant defense components in lentil (Lens culinaris Medik.) and grass Pea (Lathyrus sativus L.). Ann Rev Res Biol 3(3):195–212

    Google Scholar 

  • Tamoto S, Tabelin CB, Igarashi T, Ito M, Hiroyoshi N (2015) Short and long term release mechanisms of arsenic, selenium and boron from a tunnel-excavated sedimentary rock under in situ conditions. J Contam Hydrol. doi:10.1016/j.jconhyd.2015.01.003

    Google Scholar 

  • Tang H, Liu Y, Gong X, Zeng G, Zheng B, Wang D, Sun Z, Zhou L, Zeng X (2015) Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea L. Gaud.) under cadmium stress. Environ Sci Pollut Res 22:9999–10008. doi:10.1007/s11356-015-4187-2

    Article  CAS  Google Scholar 

  • Tedeschini E, Proietti P, Timorato V, D’Amato R, Nasini L, Dei Buono D, Businelli D, Frenguelli G (2015) Selenium as stressor and antioxidant affects pollen performance in Olea europaea. Flora. doi:10.1016/j.flora.2015.05.009

    Google Scholar 

  • Terry N, Carlson C, Raab TK, Zayed AM (1992) Rates of selenium volatilisation amongst crop species. J Environ Qual 21:341–344

    Article  CAS  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Ann Rev Plant Physiol 51:401–432

    Article  CAS  Google Scholar 

  • Thavarajah D, Thavarajah P, Combs GF Jr (2013) Lentils (Lens culinaris L.) as a source of dietary selenium. In: Preedy VR et al (eds) Handbook of food fortification and health: from concepts to public health applications, Nutrition and Health, vol 1. Springer Science + Business Media, New York, pp 255–264. doi:10.1007/978-1-4614-7076-2_20

    Chapter  Google Scholar 

  • Thavarajah D, Thavarajah P, Vial E, Gebhardt M, Lacher C, Kumar S, Combs GF (2015) Will selenium increase lentil (Lens culinaris Medik) yield and seed quality? Front Plant Sci. doi:10.3389/fpls.2015.00356

    Google Scholar 

  • Thiry C, Schneider Y-J, Pussemier L, De Temmerman L, Ruttens A (2013) Selenium bioaccessibility and bioavailability in Se-enriched food supplements. Biol Trace Elem Res 152:152–160. doi:10.1007/s12011-013-9604-0

    Article  CAS  Google Scholar 

  • Tian F, An L, Wu D (2012) Method for improving fresh blueberry by biological selenium nanofertilizer. CN 10274248249

  • Tognon GB, Sanmartın C, Alcolea V, Cuque FL, Goicoechea N (2015) Mycorrhizal inoculation and/or selenium application affect postharvest performance of snapdragon flowers. Plant Growth Regul. doi:10.1007/s10725-015-0100-8

    Google Scholar 

  • Tremblay GF, Bélanger G, Lajeunesse J, Yvan Chouinard P, Charbonneau É (2015) Timothy response to increasing rates of selenium fertilizer in Eastern Canada. Agron J 107(1):211–220. doi:10.2134/agronj14.0397

    Article  CAS  Google Scholar 

  • Tripathi V, Fracetob LF, Abhilash PC (2015) Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant–microbe–pollutant and climate nexus. Ecol Eng 82:330–335. doi:10.1016/j.ecoleng.2015.05.027

    Article  Google Scholar 

  • Tsai C, Ou B, Liang Y, Yeh F (2013) Growth inhibition and antioxidative status induced by selenium enriched broccoli extract and selenocompounds in DNA mismatch repair-deficient human colon cancer cells. Food Chem 139:267–273

    Article  CAS  Google Scholar 

  • Turakainen M, Hartikainen H, Seppänen MM (2004) Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J Agric Food Chem 52:5378–5382

    Article  CAS  Google Scholar 

  • Turakainen M, Hartikainen H, Seppänen M (2005) Selenium in plant nutrition. In: Eurola M (ed) Proceedings, twenty years of selenium fertilization, September 8–9, 2005, Helsinki, Finland, Agrifood Research Reports, vol 69. MTT Agrifood Research Finland, Jokioinen, pp 54–59

  • Vamerali T, Bandiera M, Lucchini P, Dickinson NM, Mosca G (2014) Long-term phytomanagement of metal-contaminated land with field crops: integrated remediation and biofortification. Eur J Agron 53:56–66

    Article  CAS  Google Scholar 

  • van Maarschalkerweerd M, Husted S (2015) Recent developments in fast spectroscopy for plant mineral analysis. Front Plant Sci 2015(6):169. doi:10.3389/fpls.2015.00169

    Google Scholar 

  • Visioli G, D’Egidio S, Sanangelantoni AM (2015) The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy. Front Plant Sci 5:752. doi:10.3389/fpls.2014.00752

    Article  Google Scholar 

  • Wang Q, Webster TJ (2012) Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. J Biomed Mater Res A 100:3205–3210

  • Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42:1524–1533

    Article  CAS  Google Scholar 

  • Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B 80:94–102

    Article  CAS  Google Scholar 

  • Wang J, Wang Z, Mao H, Zhao H, Huang D (2013) Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the Loess Plateau in China. Field Crops Res 150:83–90. doi:10.1016/j.fcr.2013.06.010

    Article  Google Scholar 

  • Wang J, Lu X, Yuan L, Yin X (2014a) Selenium bioavailability in typical selenium-biofortified foods. In: Baňuelos GS, Z-Q Lin, Xuebin Yin (eds) Selenium in the environment and human health. Proceedings of the 3rd international conference on Selenium in the environment and human health, Hefei, China, 10–14 Nov 2013, Taylor & Francis Group, London, UK, pp 147–148

  • Wang X, Tam NF, Fu S, Ametkhan A, Ouyang Y, Ye Z (2014b) Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). Ann Bot 114(2):271–278. doi:10.1093/aob/mcu117

    Article  CAS  Google Scholar 

  • Wangeline AL, Valdez JR, Lindblom SD, Bowling KL, Reeves FB, Pilon-Smits EAH (2011) Selenium tolerance in rhizosphere fungi from Se hyperaccumulator and non-hyperaccumulator plants. Am J Bot 98:1139–1147

    Article  Google Scholar 

  • Wei S, Zhou Q (2008) Trace elements in agro-ecosystems. In: Prasad MNV (ed) Trace elements as contaminants and nutrients. Wiley, New Jersey, pp 55–80

    Chapter  Google Scholar 

  • Wei L, Li J, Zhu C (2012) Nano-selenium amino acid foliar fertilizer and preparation method of the same. CN 102391053

  • Wen H, Carignan J (2007) Reviews on atmospheric selenium: emissions, speciation and fate. Atmos Environ 41:7151–7165. doi:10.1016/j.atmosenv.2007.07.035

    Article  CAS  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Astragalus thaliana. J Exp Bot 55:1927–1937. doi:10.1093/jxb/erh192

    Article  CAS  Google Scholar 

  • Winkel LH, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M et al (2012) Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol 46:571–579. doi:10.1021/es203434d

    Article  CAS  Google Scholar 

  • Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015) Selenium cycling across soil–plant–atmosphere interfaces: a critical review. Nutrients 7:4199–4239. doi:10.3390/nu7064199

    Article  CAS  Google Scholar 

  • Wolff SA, Coelho LH, Zabrodina M, Brinckmann E, Kittang A-I (2013) Plant mineral nutrition, gas exchange and photosynthesis in space: a review. Adv Space Res 51(3):465–475. doi:10.1016/j.asr.2012.09.024

    Article  CAS  Google Scholar 

  • Wu H, Tang S, Zhang X, Guo J, Song Z, Tian S (2009) Using elevated CO2 to increase the biomass of a Sorghum vulgare Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to trigger hyperaccumulation of cesium. J Hazard Mater 170:861–870

    Article  CAS  Google Scholar 

  • Wu Z, Bañuelos GS, Lin Z-Q, Liu Y, Yuan L, Yin X, Li M (2015a) Biofortification and phytoremediation of selenium in China. Front Plant Sci 6:136. doi:10.3389/fpls.2015.00136

    Google Scholar 

  • Wu Z, Bañuelos GS, Yin X, Lin Z, Terry N, Liu Y, Yuan L, Li M (2015b) Phytoremediation of the metalloid selenium in soil and water. In: Ansari AA et al (eds) Phytoremediation: management of environmental contaminants, vol 2. Springer International Publishing, Switzerland, pp 171–175. doi:10.1007/978-3-319-10969-5_13

    Google Scholar 

  • Xue TL, Hartikainen H (2000) Association of antioxidative enzymes with the synergistic effect of selenium and UV irradiation in enhancing plant growth. Agric Food Sci Finl 9:177–186

    CAS  Google Scholar 

  • Xuebin Y, Ying L, Wen T (2009) The preparation of a nano long-acting selenium fertilizer. WO 2009111986

  • Yadav SK, Singh I, Sharma A, Singh D (2008) Selenium status in food grains of northern districts of India. J Environ Manag 88:770–774. doi:10.1016/j.jenvman.2007.04.012

    Article  CAS  Google Scholar 

  • Yadav T, Mungray AA, Mungray AK (2014) Fabricated nanoparticles: current status and potential phytotoxic threats. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 230. Springer International Publishing, Switzerland, pp 83–110. doi:10.1007/978-3-319-04411-8_4

    Google Scholar 

  • Yao X, Jianzhou C, Xueli H, Binbin L, Jingmin L, Zhaowei Y (2013) Effects of selenium on agronomical characters of winter wheat exposed to enhanced ultraviolet-B. Ecotoxicol Environ Saf 92:320–326. doi:10.1016/j.ecoenv.2013.03.024

    Article  CAS  Google Scholar 

  • Yasin M, Faisal M, Pilon-Smits EAH (2014) Selenium biofortification and its effects on flour paste viscosity properties in wheat. In: Baňuelos GS, Lin Z-Q, Yin X (eds) Selenium in the environment and human health. Proceedings of the 3rd international conferrence on Selenium in the environment and human health, Hefei, China, 10–14 Nov 2013, Taylor & Francis Group, London, UK, pp 140–141

  • Yasin M, El-Mehdawi AF, Pilon-Smits EAH, Faisal M (2015a) Selenium-fortified wheat: potential of microbes for biofortification of selenium and other essential nutrients. Int J Phytoremediation 17(8):777–786. doi:10.1080/15226514.2014.987372

    Article  CAS  Google Scholar 

  • Yasin M, El Mehdawi AF, Jahn CE, Anwar A, Turner MFS, Faisal M, Pilon-Smits EAH (2015b) Seleniferous soils as a source for production of selenium-enriched foods and potential of bacteria to enhance plant selenium uptake. Plant Soil 386:385–394. doi:10.1007/s11104-014-2270-y

    Article  CAS  Google Scholar 

  • Yasin M, El-Mehdawi AF, Anwar A, Pilon-Smits EA, Faisal M (2015c) Microbial-enhanced selenium and iron biofortification of wheat (triticum aestivum L.)—applications in phytoremediation and biofortification. Int J Phytoremediation 17:341–347

    Article  CAS  Google Scholar 

  • Yawata A, Oishi Y, Anan Y, Ogra Y (2010) Comparison of selenium metabolism in three Brassicaceae plants. J Health Sci 56(6):699–704. doi:10.1248/jhs.56.699

    Article  CAS  Google Scholar 

  • Yin X, Yuan L (2012) Phytoremediation and biofortification: two sides of one coin., Briefs in green chemistry for sustainability seriesSpringer, Heidelberg. doi:10.1007/978-94-007-1439-7

    Book  Google Scholar 

  • Yu H (2005) Cultivation technology for production of ziziphus jujuba fruit rich in selenium. CN 1672490

  • Zare B, Babaie S, Setayesh N, Shahverdi AR (2013) Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed J 1(1):13–19

    Google Scholar 

  • Zayed AM, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–289

    Article  CAS  Google Scholar 

  • Zhang Y, Gladyshev VN (2009) Comparative genomics of trace elements: emerging dynamic view of trace element utilization and function. Chem Rev 109:4828–4861

    Article  CAS  Google Scholar 

  • Zhang J-S, Gao X-Y, Zhang L-D, Bao Y-P (2001) Biological effects of a nano red elemental selenium. BioFactors 15:27–38

    Article  Google Scholar 

  • Zhang L, Feng C, Chen Z et al (2008) Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. Nano Lett 8(8):2564–2569

    Article  CAS  Google Scholar 

  • Zhang Y, Wang J, Zhang L (2010) Creation of highly stable selenium nanoparticles capped with hyperbranched polysaccharide in water. Langmuir 26(22):17617–17623. doi:10.1021/la1033959

    Article  CAS  Google Scholar 

  • Zhang P, Ma Y, Zhang Z (2015) Interactions between engineered nanomaterials and plants: phytotoxicity, uptake, translocation, and biotransformation. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences nanoparticles and their impact on plants. Springer International Publishing, Switzerland, pp 77–99. doi:10.1007/978-3-319-14502-5

    Google Scholar 

  • Zhao F-J, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 2009(12):373–380. doi:10.1016/j.pbi.2009.04.005

    Article  CAS  Google Scholar 

  • Zhao C, Ren J, Xue C, Lin E (2005) Study on the relationship between soil selenium and plant selenium uptake. Plant Soil 277:197–206

    Article  CAS  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter osnip2;1 in selenite uptake in rice. Plant Physiol 153:1871–1877

    Article  CAS  Google Scholar 

  • Zhao L, Yuan L, Wang Z, Lei T, Yin X (2012) Phytoremediation of zinc-contaminated soil and zinc-biofortification for human nutrition. In: Yin X, Yuan L (eds) Phytoremediation and biofortification: two sides of one coin., Briefs in green chemistry for sustainability seriesSpringer, Heidelberg, pp 33–57. doi:10.1007/978-94-007-1439-7_3

    Chapter  Google Scholar 

  • Zhu Y-G, Pilon-Smits EAH, Zhao F-J, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14(8):436–442. doi:10.1016/j.tplants.2009.06.006

    Article  CAS  Google Scholar 

  • Zhu J-M, Johnson TM, Clark SK, Zhu X-K, Wang X-L (2014a) Selenium redox cycling during weathering of Se-rich shales: a selenium isotope study. Geochim Cosmochim Acta 126:228–249

    Article  CAS  Google Scholar 

  • Zhu Y, Yin X, Liu S, Yuan L (2014b) The selenium speciation in the seeds of the common wheat genotypes tending to accumulate high concentrations of selenium. In: Baňuelos GS, Lin Z-Q, Yin X (eds) Selenium in the environment and human health. Proceedings of the 3rd international conference on selenium in the environment and human health, Hefei, China, 10–14 Nov 2013. Taylor & Francis Group, London, UK, pp 136–137

Download references

Acknowledgments

Authors thank the outstanding contribution of STDF research teams (Science and Technology Development Fund, Egypt) and MBMF/DLR (the Federal Ministry of Education and Research of the Federal Republic of Germany), (Project ID 5310) for their help. Great support from this German-Egyptian Research Fund (GERF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan El-Ramady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ramady, H., Abdalla, N., Taha, H.S. et al. Selenium and nano-selenium in plant nutrition. Environ Chem Lett 14, 123–147 (2016). https://doi.org/10.1007/s10311-015-0535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0535-1

Keywords

Navigation