Skip to main content

Advertisement

Log in

Giant reed for selenium phytoremediation under changing climate

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

At very low concentrations selenium is an essential micronutrient for humans, animals and some lower plants including algae and bacteria, whereas Se is extremely toxic at higher doses. Living organisms can be exposed to high selenium concentrations from both natural and anthropogenic sources. Climate is a major factor governing the biogeochemistry of Se. Climate change can indeed modify Se uptake by plants and the rhizosphere and the volatilization of Se by plants. High precipitation rates and low temperatures can reduce Se accumulation by plants. Se-hyperaccumulator plants such as giant reed thus appear as a means to regulate Se flow in ecosystems. Se-hyperaccumulator plants can indeed be used to clean Se-contaminated agricultural soils and wastewaters and as a source of dietary Se. Those plants are also converting mineral soil Se into volatile organic Se that is released in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abhilash PC (2015) Managing soil resources from pollution and degradation: the need of the hour. J Clean Prod 102:550–551

    Article  Google Scholar 

  • Abhilash PC, Dubey RK (2014) Integrating aboveground–belowground responses to climate change. Curr Sci 1637–1638:12

    Google Scholar 

  • Abhilash PC, Jami S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488. doi:10.1016/j.biotechadv.2009.04.002

    Article  CAS  Google Scholar 

  • Agostini F, Gregory AS, Richter GM (2015) Carbon sequestration by perennial energy crops: is the jury still out? Bioenerg Res. doi:10.1007/s12155-014-9571-0

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372. doi:10.1111/j.1469-8137.2004.01224.x

    Article  Google Scholar 

  • Alford ÉR, Pilon-Smits EAH, Fakra SC, Paschke MW (2012) Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis. Am J Bot 99(12):1930–1941. doi:10.3732/ajb.1200124

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals: concepts and applications. Chemosphere 91:869–881. doi:10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • Ali Z, Kazi AG, Malik RN, Naz M, Khan T, Hayat A, Kazi AM (2015). Heavy metal built-up in agricultural soils of Pakistan: sources, ecological consequences, and possible remediation measures. In: Sherameti I, Varma A (eds) Heavy Metal Contamination of Soils, Soil Biology 44. Springer International Publishing Switzerland, Heidelberg, pp 23–42. doi 10.1007/978-3-319-14526-6_2

  • Alloway BJ (2013) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, 3rd edn. Springer, Dordrecht, p 613

    Book  Google Scholar 

  • Alshaal T, Domokos-Szabolcsy É, Márton L, Czakó M, Kátai J, Balogh P, Elhawat N, El-Ramady H, Fári M (2013) Phytoremediation of bauxite-derived red mud by giant reed (Arundo donax L.). Environ Chem Lett 11(3):295–302. doi:10.1007/s10311-013-0406-6

    Article  CAS  Google Scholar 

  • Alshaal T, Domokos-Szabolcsy É, Márton L, Czakó M, Kátai J, Balogh P, Elhawat N, El-Ramady H, Gerőcs A, Fári M (2014) Restoring soil ecosystems and biomass production of Arundo donax L. under microbial communities-depleted soil. Bioenergy Res 7(1):268–278. doi:10.1007/s12155-013-9369-5

    Article  CAS  Google Scholar 

  • Alshaal T, Elhawat N, Domokos-Szabolcsy É, Kátai J, Márton L, Czako M, El- Ramady H, Fári M (2015). Giant reed (Arundo donax L.): a green technology for clean environment. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol I. Springer Science + Business Media B.V., pp 3–20. doi:10.1007/978-3-319-10395-2_1

  • Amouroux D, Donard OFX (1996) Maritime emission of selenium to the atmosphere in eastern mediterranean seas. Geophys Res Lett 23:1777–1780

    Article  CAS  Google Scholar 

  • Amouroux D, Donard OFX (1997) Evasion of selenium to the atmosphere via biomethylation processes in the Gironde estuary, France. Mar Chem 58:173–188

    Article  CAS  Google Scholar 

  • Amuri NA (2015) Enhancing resilience of food production systems under changing climate and soil degradation in semi-arid and highlands of Tanzania. In: Lal et al. (eds) Sustainable intensification to advance food security and enhance climate resilience in Africa. Springer International Publishing Switzerland, Heidelberg, pp 385–405. doi:10.1007/978-3-319-09360-4_21

  • Anderson J, Panetta A, Mitchell-Olds T (2012) Evolutionary and ecological responses to anthropogenic climate change. Plant Physiol 160:1728–1740. doi:10.1104/pp.112.206219

    Article  CAS  Google Scholar 

  • Angelini LG, Ceccarini L, Bonari E (2005) Biomass yield and energy balance of giant reed (Arundo donax L.) cropped in central Italy as related to different management practises. Eur J Agron 22:375–389. doi:10.1016/j.eja.2004.05.004

    Article  Google Scholar 

  • Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (2015a) Phytoremediation management of environmental contaminants, volume 1. Springer International Publishing Switzerland, Heidelberg. doi:10.1007/978-3-319-10395-2

  • Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (2015b) Phytoremediation management of environmental contaminants, volume 2. Springer International Publishing Switzerland, Heidelberg. doi:10.1007/978-3-319-10969-5

  • ATSDR (2003) Agency for Toxic Substances and Disease Registry (2003) Public health statement: selenium. U.S. Dept. Health & Human Services. Agency for Toxic Substances and Disease Registry, Atlanta, GA. http://www.atsdr.cdc.gov/ToxProfiles/tp92-c1-b.pdf/10.5.213

  • Baig MB, Shahid SA (2014). Managing degraded lands for realizing sustainable agriculture through environmental friendly technologies. In: Behnassi M et al (eds) Science, policy and politics of modern agricultural system. Springer Science + Business Media, Dordrecht, pp 141–164. doi:10.1007/978-94-007-7957-0_10

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal accumulation crops. Resourc Conserv Recycl 11:41–49

    Article  Google Scholar 

  • Balakrishnan H, Velu R (2015). Eco-friendly technologies for heavy metal remediation: pragmatic approaches. In: Thangavel P, Sridevi G (eds) Environmental sustainability. Springer, India, pp 205–215. doi:10.1007/978-81-322-2056-5_12

  • Balogh E, Jr JM, Herr M Czako, Marton L (2012) Defective development of male and female gametophytes in Arundo donax L. (POACEAE). Biomass Bioenergy 45:265–269. doi:10.1016/j.biombioe.2012.06.010

    Article  Google Scholar 

  • Bañuelos GS (2002) Irrigation of broccoli and canola with boron- and selenium-laden effluent. J Environ Qual 31(6):1802–1808

    Article  Google Scholar 

  • Bañuelos GS (2006) Phyto-products may be essential for sustainability and implementation of phytoremediation. Environ Pollut 144:19–23. doi:10.1016/j.envpol.2006.01.015

    Article  CAS  Google Scholar 

  • Bañuelos GS, Lin Z-Q (2007) Acceleration of selenium volatilization in seleniferous agricultural drainage sediments amended with methionine and casein. Environ Pollut 150:306–312. doi:10.1016/j.envpol.2007.02.009

    Article  CAS  Google Scholar 

  • Bañuelos GS, Lin Z-Q, Arroyo I, Terry N (2005) Selenium volatilization in vegetated agricultural drainage sediment from the San Luis drain, central California. Chemosphere 60:1203–1213. doi:10.1016/j.chemosphere.2005.02.033

    Article  CAS  Google Scholar 

  • Bañuelos GS, Bitterli C, Schulin R (2013) Fate and movement of selenium from drainage sediments disposed onto soil with and without vegetation. Environ Pollut 180:7–12. doi:10.1016/j.envpol.2013.04.034

    Article  CAS  Google Scholar 

  • Bañuelos GS, Arroyo I, Pickering IJ, Yang SI, Freeman JL (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608. doi:10.1016/j.foodchem.2014.06.071

    Article  CAS  Google Scholar 

  • Barbafieri M, Dadea C, Tassi E, Bretzel F, Fanfani L (2011) Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: Discovering native flora for phytoremediation. Int J Phytorem 13:985–997. doi:10.1080/15226514.2010.549858

    Article  CAS  Google Scholar 

  • Bhanwra RK, Choda SP, Kumar S (1982) Comparative embryology of some grasses. Proc Indian Natl Sci Acad 48(1):152–162

    Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120. doi:10.1016/j.jenvman.2012.04.002

    Article  CAS  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal (loid) s contaminated soils-to mobilize or to immobilize? J Hazard Mater 266:141–166. doi:10.1016/j.jhazmat.2013.12.018

    Article  CAS  Google Scholar 

  • Bonanno G (2012) Arundo donax as a potential biomonitor of trace element contamination in water and sediment. Ecotoxicol Environ Safety 80:20–27. doi:10.1016/j.ecoenv.2012.02.005

    Article  CAS  Google Scholar 

  • Bonin CL, Heaton EA, Barb J (2014) Miscanthus sacchariflorus—biofuel parent or new weed? GCB Bioenergy 6:629–636. doi:10.1111/gcbb.12098

    Article  Google Scholar 

  • Burger J, Gochfeld M, Jeitner C, Donio M, Pittfield T (2012) Selenium: mercury molar ratios in freshwater fish from Tennessee: individual, species, and geographical variations have implications for management. EcoHealth 9:171–182. doi:10.1007/s10393-012-0761-y

    Article  Google Scholar 

  • Capelli G, Yamaç SS, Stella T, Francone C, Paleari L, Confalonieri R (2015) Are advantages from partial replacement of corn with second generation energy crops undermined by climate change? A case study for giant reed in Northern Italy. Biomass Bioenergy 80:85–93. doi:10.1016/j.biombioe.2015.04.038

    Article  Google Scholar 

  • Cappa JJ, Pilon-Smits EAH (2014) Evolutionary aspects of hyperaccumulation. Planta 239:267–275. doi:10.1007/s00425-013-1983-0

    Article  CAS  Google Scholar 

  • Cappa JJ, Cappa PJ, El Mehdawi AF, McAleer JM, Simmons MP, Pilon-Smits EA (2014) Characterization of selenium and sulfur accumulation across the genus Stanleya (Brassicaceae): a field survey and common-garden experiment. Am J Bot 101(5):830–839. doi:10.3732/ajb.1400041

    Article  Google Scholar 

  • Cartes P, Jara AA, Pinilla L, Rosas A, Mora ML (2010) Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Ann Appl Biol 156:297–307. doi:10.1111/j.1744-7348.2010.00387.x

    Article  CAS  Google Scholar 

  • Cattaneo F, Barbanti L, Gioacchini P, Ciavatta C, Marzadori C (2014) 13C abundance shows effective soil carbon sequestration in Miscanthus and giant reed compared to arable crops under Mediterranean climate. Biol Fertil Soils 50:1121–1128. doi:10.1007/s00374-014-0931-x

    Article  CAS  Google Scholar 

  • Ceotto E, Di Candilo M (2010) Shoot cuttings propagation of giant reed (Arundo donax L.) in water and moist soil: The path forward? Biomass Bioenergy 34:1614–1623. doi:10.1016/j.biombioe.2010.06.002

    Article  Google Scholar 

  • Ceotto E, Castelli F, Moschella A, Diozzi M, Di Candilo M (2015) Cattle slurry fertilization to giant reed (Arundo donax L.): biomass yield and nitrogen use efficiency. Bioenerg Res. doi:10.1007/s12155-015-9577-2

  • Chang Y, Zhang J, Qu J, Zhang G, Zhang A, Zhang R (2015) The behavior of dissolved inorganic selenium in the Changjiang Estuary. J Mar Syst. doi:10.1016/j.jmarsys.2015.01.008

    Google Scholar 

  • Chapman PM, Adams WJ, Brooks ML, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw DP (2010) Ecological assessment of selenium in the aquatic environment. Society of Environmental Toxicology and Chemistry (SETAC), Taylor & Francis Group NY

  • Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems—a LCA case study. Appl Energy 87:47–57. doi:10.1016/j.apenergy.2009.08.024

    Article  CAS  Google Scholar 

  • Cooke TD, Bruland KW (1987) Aquatic chemistry of selenium—evidence of biomethylation. Environ Sci Technol 21:1214–1219

    Article  Google Scholar 

  • Csurhes S (2009) Weed risk assessment: giant reed (Arundo donax L.). The State of Queensland, Department of Employment, Economic Development and Innovation, Australia. http://www.daff.qld.gov.au/documents/Biosecurity_EnvironmentalPests/IPA-Giant-Reed-Risk-Assessment.pdf/17.5.2013

  • De Filippis LF (2010) Biochemical and molecular aspects in phytoremediation of selenium. In: Ashraf M et al. (eds) Plant adaptation and phytoremediation. Springer Science + Business Media B.V., pp 193–226. doi:10.1007/978-90-481-9370-7_10

  • Dhillon KS, Dhillon SK (2014) Development and mapping of seleniferous soils in northwestern India. Chemosphere 99:56–63. doi:10.1016/j.chemosphere.2013.09.072

    Article  CAS  Google Scholar 

  • Di Girolamo G, Grigatti M, Barbanti L, Angelidaki I (2013) Effects of hydrothermal pre-treatments on Giant reed (Arundo donax) methane yield. Bioresour Technol 147:152–159. doi:10.1016/j.biortech.2013.08.006

    Article  CAS  Google Scholar 

  • Diao M, Ma L, Wang J, Cui J, Fu A, Liu H-Y (2014) Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J Plant Growth Regul 33(3):671–682. doi:10.1007/s00344-014-9416-2

    Article  CAS  Google Scholar 

  • Diaz X, Johnson WP, Wade AO, Naftz DL (2009) Volatile selenium flux from the Great Salt Lake. Utah. Environ. Sci. Technol. 43:53–59

    Article  CAS  Google Scholar 

  • Diodato N, Fagnano M, Alberico I (2009) CliFEM–climate forcing and erosion response modelling at long-term Sele River research basin (Southern Italy). Nat Hazards Earth Syst Sci 9:1693–1702. doi:10.5194/nhess-9-1693-2009

    Article  Google Scholar 

  • Domokos-Szabolcsy E, Alladalla NA, Alshaal T, Sztrik A, Márton L, El-Ramady H (2014). In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance. International Journal of Horticultural Science 20 (3–4):119–122

  • Dougherty RF, Quinn LD, Endres AB, Voigt TB, Barney JN (2014) Natural history survey of the ornamental grass Miscanthus sinensis in the introduced range. Invasive Plant Science and Management 7(1):113–120. doi:10.1614/IPSM-D-13-00037.1

    Article  Google Scholar 

  • Dragoni F, o Di Nasso NN, Tozzini C, Bonari E, Ragaglini G (2015) Aboveground yield and biomass quality of giant reed (Arundo donax L.) as affected by harvest time and frequency. Bioenerg Res. doi:10.1007/s12155-015-9598-x

  • Dunford RW, Smith AC, Harrison PA, Hanganu D (2015) Ecosystem service provision in a changing Europe: adapting to the impacts of combined climate and socio-economic change. Landscape Ecol 30:443–461. doi:10.1007/s10980-014-0148-2

    Article  Google Scholar 

  • Dungan RS, Stork A, Frankenberger WT (2000) A wind tunnel for measuring selenium volatilization under field-like conditions. J Environ Qual 29:460–466

    Article  CAS  Google Scholar 

  • El Massah S, Omran G (2015) Would climate change affect the imports of cereals? The case of Egypt. In: Leal Filho W (ed) Handbook of climate change adaptation. Springer, Berlin, pp 657–683, doi 10.1007/978-3-642-38670-1_61

  • El Mehdawi AF, Pilon-Smits EA (2012) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14(1):1–10. doi:10.1111/j.1438-8677.2011.00535.x

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Quinn CF, Pilon-Smits EAH (2011a) Effects of selenium hyperaccumulation on plant–plant interactions: evidence for elemental allelopathy. New Phytol 191:120–131. doi:10.1111/j.1469-8137.2011.03670.x

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Quinn CF, Pilon-Smits EAH (2011b) Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory. Curr Biol 21:1440–1449. doi:10.1016/j.cub.2011.07.033

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Cappa JJ, Fakra SC, Self J, Pilon-Smits EAH (2012) Interactions of selenium hyperaccumulators and nonaccumulators during cocultivation on seleniferous or nonseleniferous soil—the importance of having good neighbors. New Phytol 194:264–277. doi:10.1111/j.1469-8137.2011.04043.x

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Cappa JJ, Fakra SC, Reynolds RJB, Prins CN, Lindblom SD, Pilon-Smits EAH (2014) Analysis of selenium accumulation, speciation and tolerance of potential selenium hyperaccumulator Symphyotrichum ericoides. Physiol Plant 152:70–83. doi:10.1111/ppl.12149

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Lindblom SD, Cappa JJ, Fakra SC, Pilon-Smits EAH (2015a) Do selenium hyperaccumulators affect selenium speciation in neighboring plants and soil? An X-Ray Microprobe Analysis. Int J Phytoremediat 17(8):753–765. doi:10.1080/15226514.2014.987374

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Paschke MW, Pilon-Smits EAH (2015b) Symphyotrichum ericoides populations from seleniferous and nonseleniferous soil display striking variation in selenium accumulation. New Phytol 206:231–242. doi:10.1111/nph.13164

    Article  CAS  Google Scholar 

  • El-Bassam N, Dalianis CD (2010) Giant reed (Arundo donax L.). In: El Bassam N (ed) Bioenergy crops: a development guide and species reference, 1st ed. Earthscan publishing for a sustainable future, London, pp 193–199

  • Elhawat N, Domokos-Szabolcsy É, Alshaal T, Molnár M, Antal G, Márton L, Fári MG (2013) In vitro salt tolerance comparison of two giant reed ecotypes (Arundo donax L.) induced by somatic embryogenesis (in Hungarian), XIX. Plant Breeding Scientific Days, 7th March, Keszthely, Hungary, 38

  • Elhawat N, Alshaal T, Domokos-Szabolcsy É, Márton L, Czakó M, Kátai J, Balogh P, Sztrik A, El-Ramady H, Molnár M, Fári M (2014) Phytoaccumulation potentials of two biotechnologically propagated ecotypes of Arundo donax in copper-contaminated synthetic wastewater. Environ Sci Pollut Res 21(12):7773–7780. doi:10.1007/s11356-014-2736-8

    Article  CAS  Google Scholar 

  • Elhawat N, Alshaal T, Domokos-Szabolcsy É, El-Ramady H, Antal G, Márton L, Czakó M, Balogh P, Fári M (2015) Copper uptake efficiency and its distribution within bioenergy grass giant reed. Bull Environ Contam Toxicol. doi:10.1007/s00128-015-1622-5

    Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, Fári M, Prokisch J, Pilon-Smiths EAH, Domokos-Szabolcsy É (2015a) Selenium phytoremediation by giant reed. In: Lichtfouse E (ed) Environmental chemistry for a sustainable world, vol 6 (Hydrogen production and remediation of carbon and pollutants). Springer Science + Business Media B.V. doi:10.1007/978-3-319-19375-5_4

  • El-Ramady H, Abdalla N, Alshaal T, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Sztrik A, Fári M, El-Marsafawy S, Shams MS (2015b) Selenium in soils under climate change, implication for human health. Environ Chem Lett 13(1):1–19. doi:10.1007/s10311-014-0480-4

  • El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Faizy SE-DA, Shams MS, Shalaby T, Bayoumi N, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Pilon-Smiths EA, Domokos-Szabolcsy É (2015c) Selenium and its role in higher plants. In: Lichtfouse E (ed) Pollutants in buildings, water and living organisms, Environmental chemistry for a sustainable world, vol 7. Springer Science? Business Media B.V. doi:10.1007/978-3-319-19276-5

  • Evangelou MWH, Deram A (2014) Phytomanagement: a realistic approach to soil remediating phytotechnologies with new challenges for plant science. Int J Plant Biol Res 2(4):1023

    Google Scholar 

  • Fagnano M, Impagliazzo A, Mori M, Fiorentino N (2015) Agronomic and Environmental Impacts of Giant Reed (Arundo donax L.): results from a long-term field experiment in Hilly areas subject to soil erosion. Bioenerg Res 8:415–422. doi:10.1007/s12155-014-9532-7

    Article  Google Scholar 

  • Favas PJC, Pratas J, Prasad MNV (2012) Accumulation of arsenic by aquatic plants in largescale field conditions: opportunities for phytoremediation and bioindication. Sci Total Environ 433:390–397. doi:10.1016/j.scitotenv.2012.06.091

    Article  CAS  Google Scholar 

  • Favas PJC, Pratas J, Varun M, D’Souza R, Paul MS (2014) Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. In: Hernandez-Soriano MC (ed) Environmental risk assessment of soil contamination. InTech, ISBN 978-953-51-1235-8, pp 487–517

  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68. doi:10.1016/j.envexpbot.2012.09.002

    Article  CAS  Google Scholar 

  • Fiorentino N, Impagliazzo A, Ventorino V, Pepe O, Piccolo A, Fagnano M (2010) Biomass accumulation and heavy metal uptake of giant reed on polluted soil in southern Italy. J Biotechnol 150:261. doi:10.1016/j.jbiotec.2010.09.155

    Article  Google Scholar 

  • Forte A, Zucaro A, Fagnano M, Bastianoni S, Basosi R, Fierro A (2015) LCA of Arundo donax L. lignocellulosic feedstock production under Mediterranean conditions. Biomass Bioenergy 73(32–4):7. doi:10.1016/j.biombioe.2014.12.005

    Google Scholar 

  • Freibauer A (2003) Regionalised inventory of biogenic greenhouse gas emissions from European agriculture. Eur J Agron 19:135–160

    Article  CAS  Google Scholar 

  • Fu D, Teng Y, Luo Y, Tu C, Li S (2012) Effects of alfalfa and organic fertilizer on benzopyrene dissipation in an aged contaminated soil. Environ Sci Pollut Res 19:1605–1611. doi:10.1007/s11356-011-0672-4

    Article  CAS  Google Scholar 

  • Gajewska E, Drobik D, Wielanek M, Sekulska-Nalewajko J, Gocławski J, Mazur J, Skłodowska M (2013) Alleviation of nickel toxicity in wheat (Triticum aestivum L.) seedlings by selenium supplementation. Biol Lett 50(2):63–76. doi:10.2478/biolet-2013-0008

  • Gao S, Tanji KK, Lin ZQ, Terry N, Peters DW (2003) Selenium removal and mass balance in a constructed flow-through wetland system. J Environ Qual 32:1557–1570

    Article  CAS  Google Scholar 

  • Gojkovic Ž, Garbayo I, Gómez Ariza JL, Márová I, Vílchez C (2015) Selenium bioaccumulation and toxicity in cultures of green microalgae. Algal Res 7:106–116. doi:10.1016/j.algal.2014.12.008

    Article  Google Scholar 

  • Greipsson S (2011) Phytoremediation. Nat Educ Knowl 2:7

    Google Scholar 

  • Guntiñas CM, Ceulemans M, Witte C, Lobinski R, Adams F (1995) Evaluation of a purge-and-trap injection system for capillary gas chromatography-microwave induced plasma-atomic emission spectrometry for the determination of volatile selenium compounds in water. Microchim Acta 120:73–82

    Article  Google Scholar 

  • Gupta P (2013) Soil and its economic: implications in India. Int J Res Dev Pharmacy Life Sci 2(6):650–666

  • Hajiboland R, Sadeghzadeh N, Sadeghzadeh B (2014) Effect of Se application on photosynthesis, osmolytes and water relations in two durum wheat (Triticum durum L.) genotypes under drought stress. Acta Agric Slovenica 103–2:167–179. doi:10.14720/aas.2014.103.2.2

    Article  Google Scholar 

  • Hamilton SJ (2002) Rationale for a tissue-based selenium criterion for aquatic life. Aquat Toxicol 57(1–2):85–100

    Article  CAS  Google Scholar 

  • Han D, Xiong S, Tu S, Liu J, Chen C (2015) Interactive effects of selenium and arsenic on growth, antioxidant system, arsenic and selenium species of Nicotiana tabacum L. Environ Exp Bot 117:12–19. doi:10.1016/j.envexpbot.2015.04.008

    Article  CAS  Google Scholar 

  • Hansen D, Duda PJ, Zayed A, Terry N (1998) Selenium removal by constructed wetlands: role of biological volatilization. Environ Sci Technol 32:591–597

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MdM, Fujita M (2014) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161:297–307. doi:10.1007/s12011-014-0120-7

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Szymańska M (2010) Selenium modifies the effect of short-term chilling stress on cucumber plants. Biol Trace Elem Res 138(1–3):307–315. doi:10.1007/s12011-010-8613-5

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Pogorzelec M (2015) The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol Plant 37:41. doi:10.1007/s11738-015-1788-9

    Article  CAS  Google Scholar 

  • Herrick JE, Beh A (2015) A risk-based strategy for climate change adaptation in dryland systems based on an understanding of potential production, soil resistance and resilience, and social stability. In: Lal R et al. (eds) Sustainable intensification to advance food security and enhance climate resilience in Africa. Springer International Publishing Switzerland, Heidelberg, pp 407–424. doi:10.1007/978-3-319-09360-4_22

  • Hu Y, Norton GJ, Duan G, Huang Y, Liu Y (2014) Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants. Plant Soil 384(1–2):131–140. doi:10.1007/s11104-014-2189-3

    Article  CAS  Google Scholar 

  • IPCC (2013) Climate change: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Iqbal M, Hussain I, Liaqat H, Arslan Ashraf M, Rasheed Rizwan, Rehman Aziz Ur (2015a) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol Biochem 94:95–103. doi:10.1016/j.plaphy.2015.05.012

    Article  CAS  Google Scholar 

  • Iqbal M, Khan R, Nazir F, Asgher M, Per TS, Khan NA (2015b) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18. doi:10.1016/j.jplph.2014.09.011

    Article  CAS  Google Scholar 

  • Jatav KS, Singh RP, Mishra JK, Chauhan AKS (2012) Phytoremediation as an emerging green technology for removal of pollutant from natural resources. Indian J Life Sci 2(1):149–152

    Google Scholar 

  • Jayawardena AW (2015) Climate change—is it the cause or the effect? KSCE J Civil Eng 19(2):359–365. doi:10.1007/s12205-015-0524-8

    Article  Google Scholar 

  • Jiang C, Zu C, Shen J, Shao F, Li T (2015) Effects of selenium on the growth and photosynthetic characteristics of flue-cured tobacco (Nicotiana tabacum L.). Acta Soc Bot Pol 84(1):71–77. doi:10.5586/asbp.2015.006

  • Kabata-Pendias E (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin

    Book  Google Scholar 

  • Kabata-Pendias A, Szteke B (2015) Trace elements in abiotic and biotic environments. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kausar SQ, Mahmooda I Ahmad, Raja A, Khan S, Sultan MA, Gilanid, Shujaat S (2012) Potential of Arundo donax to treat chromium contamination. Ecol Eng 42:256–259. doi:10.1016/j.ecoleng.2012.02.019

    Article  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  Google Scholar 

  • Khan MS, Hell R (2014) Applied cell biology of sulphur and selenium in plants. In: Nick P, Opatrny Z (eds) Applied plant cell biology, plant cell monographs 22. Springer, Berlin, pp 247–272. doi:10.1007/978-3-642-41787-0_8

  • Kurian M, Ardakanian R (2015) Governing the nexus: water, soil and waste resources considering global change. Springer International Publishing Switzerland, Heidelberg. doi:10.1007/978-3-319-05747-7

    Book  Google Scholar 

  • Lal R (2009a) Soils and sustainable agriculture: a review. In: Lichtfouse E et al. (eds) Sustainable agriculture. Springer Science + Business Media B.V., pp 15–23. doi:10.1007/978-90-481-2666-8_3

  • Lal R (2009b) Soils and food sufficiency: a review. In: Lichtfouse E et al. (eds) Sustainable agriculture. Springer Science + Business Media B.V., pp 25–49. doi:10.1007/978-90-481-2666-8_4

  • Lal R (2014a) Climate strategic soil management. Challenges 5:43–74. doi:10.3390/challe5010043

    Article  Google Scholar 

  • Lal R (2014b) Managing terrestrial carbon in a changing climate. In: Kapur S, Ersahin S (eds) Soil security for ecosystem management. Springer Briefs in Environment, Security, Development and Peace 8, pp 1–18. doi:10.1007/978-3-319-00699-4_1

  • Lal R (2015) The nexus approach to managing water, soil and waste under changing climate and growing demands on natural resources. In: Kurian M, Ardakanian R (eds) Governing the Nexus. Springer International Publishing Switzerland, Heidelberg, pp 39–60. Doi: 10.1007/978-3-319-05747-7_3

  • Lal R, Singh BR, Mwaseba DL, Kraybill D, Hansen DO, Eik LO (2015) Sustainable intensification to advance food security and enhance climate resilience in Africa. Springer International Publishing Switzerland, Heidelberg. doi:10.1007/978-3-319-09360-4

  • Lambert AM, Dudley TL, Robbins J (2014) Nutrient enrichment and soil conditions drive productivity in the large-statured invasive grass Arundo donax. Aquat Bot 112:16. doi:10.1016/j.aquabot.2013.07.004

    Article  CAS  Google Scholar 

  • Le Duc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Abdel Samie M, Chiang C-Y, Tagmount A, de Souza M, Neuhier B, Bock A, Caruso J, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indiana mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  • Li C, Xiao B, Wang QH, Yao SH, Wu JY (2014) Phytoremediation of Zn- and Cr-contaminated soil using two promising energy grasses. Water Air Soil Pollut 225:2027. doi:10.1007/s11270-014-2027-5

    Article  CAS  Google Scholar 

  • Limburg KE, Lochet A, Driscoll D, Dale DS, Huang R (2010) Selenium detected in fish otoliths: a novel tracer for a polluted lake? Environ Biol Fishes 89(3–4):433–440. doi:10.1007/s10641-010-9671-4

    Article  Google Scholar 

  • Lin Z-Q, Hansen D, Zayed A, Terry N (1999) Biological selenium volatilization: method of measurement under field conditions. J Environ Qual 28:309–315

    Article  CAS  Google Scholar 

  • Lin ZQ, Cervinka V, Pickering IJ, Zayed A, Terry N (2002) Managing selenium-contaminated agricultural drainage water by the integrated on-farm drainage management system: role of selenium volatilization. Water Res 36:3150–3160

    Article  CAS  Google Scholar 

  • Lin XS, Lin Z, Lin DM, Lin H, Luo HL, Hu YP et al (2013) Cold-tolerance of 5 species of Juncao under low temperature stress. Acta Prataculturae Sinica 22(2):227–234 (in Chinese with English Abstract)

    Google Scholar 

  • Lindblom SD, Valdez-Barillas JR, Fakra S, Marcus MA, Wangeline AL, Pilon-Smits EAH (2013) Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ Exp Bot 88:33–42. doi:10.1016/j.envexpbot.2011.12.011

    Article  CAS  Google Scholar 

  • Lindblom SD, Fakra SC, Landon J, Schulz P, Tracy B, Pilon-Smits EA (2014) Inoculation of selenium hyperaccumulator Stanleya pinnata and related non-accumulator Stanleya elata with hyperaccumulator rhizosphere fungi–investigation of effects on Se accumulation and speciation. Physiol Plant 150(1):107–118. doi:10.1111/ppl.12094

    Article  CAS  Google Scholar 

  • Liu S, Ge X, Liew LN, Liu Z, Li Y (2015) Effect of urea addition on giant reed ensilage and subsequent methane production by anaerobic digestion. Bioresour Technol 192:682–688. doi:10.1016/j.biortech.2015.06.034

    Article  CAS  Google Scholar 

  • Luca C, Pilu R, Adani F (2014) Arundo donax L.: a no-food energy crop for bioenergy and bio-compound production. Biotechnol Adv 32:1535–1549. doi:10.1016/j.biotechadv.2014.10.006

    Article  Google Scholar 

  • Luca C, Pilu R, Tambone F, Scaglia B, Adani F (2015) New energy crop giant cane (Arundo donax L.) can substitute traditional energy crops increasing biogas yield and reducing costs. Bioresour Technol 191:197–204. doi:10.1016/j.biortech.2015.05.015

    Article  CAS  Google Scholar 

  • Mahmood Q, Mirza N, Shaheen S (2015) Phytoremediation using algae and macrophytes: I. In: Ansari AA et al. (eds) Phytoremediation: management of environmental contaminants, vol 2. Springer International Publishing Switzerland, pp 265–289. doi:10.1007/978-3-319-10969-5_22

  • Martens DA, Suarez DL (2003) Soil methylation-demethylation pathways for metabolism of plant-derived selenoamino acids. In: Cai YBOC (ed) Biogeochemistry of environmentally important trace elements, vol 835. ACS Symposium Series, Washington DC, pp 355–369

  • Márton L, Czakó M (2011) Method for micropropagation of monocots based on sustained totipotent cell cultures. USA Patent 7863046

  • Miao Y, Xiao X-Y, Miao X-F, Gou Z-H, Wang F-Y (2012) Effect of amendments on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic, cadmium and lead. Trans Nonferrous Met Soc China 22:1462–1469

    Article  CAS  Google Scholar 

  • Mirza N, Mahmood Q, Pervez A, Ahmad R, Farooq R, Shah MM, Azim MR (2010) Phytoremediation potential of Arundo donax L. in arsenic contaminated synthetic wastewater. Bioresour Technol 101:5815–5819. doi:10.1016/j.biortech.2010.03.012

    Article  CAS  Google Scholar 

  • Mirza N, Pervez A, Mahmoud Q, Shah MM, Shafqat MN (2011) Ecological restoration of arsenic contaminated soil by Arundo donax L. Ecol Eng 37(12):1949–1956. doi:10.1016/j.ecoleng.2011.07.006

    Article  Google Scholar 

  • Mirza N, Mahmood Q, Shah MM, Pervez A, Sultan S (2014) Plants as useful vectors to reduce environmental toxic arsenic content. The Scientific World Journal Volume 2014, Article ID 921581, 11 pages. doi:10.1155/2014/921581

  • Misra BB, Chen S (2015) Advances in understanding CO2 responsive plant metabolomes in the era of climate change. Metabolomics. doi:10.1007/s11306-015-0825-4

    Google Scholar 

  • Mostafa EM, Hassan AMA (2015) The ameliorative effect of selenium on Azolla caroliniana grown under UV-B stress. Phytoprotection 95:20–26. doi:10.7202/1031954ar

    Article  Google Scholar 

  • Mroczek-Zdyrska M, Wójcik M (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol Trace Elem Res 147(1–3):320–328. doi:10.1007/s12011-011-9292-6

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine waste: a review. Global J Environ Res 4:135–150

    CAS  Google Scholar 

  • Nackley LL, Kim S-H (2015) A salt on the bioenergy and biological invasions debate: salinity tolerance of the invasive biomass feedstock Arundo donax. GCB Bioenergy 7:752–762. doi:10.1111/gcbb.12184

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Lens PNL (2015a) Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev 79:61–80. doi:10.1128/MMBR.00037-14

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Lens PNL (2015b) Selenium biomineralization for biotechnological applications. Trends Biotechnol 33(6):323–330. doi:10.1016/j.tibtech.2015.03.004

    Article  CAS  Google Scholar 

  • Nassi OD, Nasso N, Angelini LG, Bonari E (2010). Influence of fertilisation and harvest time on fuel quality of giant reed (Arundo donax L.) in central Italy. Eur J Agron 32:219–227. doi:10.1016/j.eja.2009.12.001

  • Nassi OD, Nasso N, Roncucci N, Bonari E (2013). Seasonal dynamics of aboveground and belowground biomass and nutrient accumulation and remobilization in giant reed (Arundo donax L.): a three year study on marginal land. Bioenerg Res 6:725–736. doi:10.1007/s12155-012-9289-9

  • Nawaz F, Ahmad R, Ashraf MY, Waraich EA, Khan SZ (2015) Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol Environ Saf 113:191–200. doi:10.1016/j.ecoenv.2014.12.003

    Article  CAS  Google Scholar 

  • Nishat A, Mukherjee N (2013) Climate change impacts, scenario and vulnerability of Bangladesh. In: Shaw R et al. (eds) Climate change adaptation actions in Bangladesh, disaster risk reduction. Springer, Japan, pp 15–41. doi:10.1007/978-4-431-54249-0_2

  • Nissim WG, Hasbroucq S, Kadri H, Pitre FE, Labrecque M (2015) Potential of selected Canadian plant species for phytoextraction of trace elements from selenium-rich soil contaminated by industrial activity. Int J Phytorem 17(8):745–752. doi:10.1080/15226514.2014.987370

    Article  CAS  Google Scholar 

  • Nsanganwimana F, Marchand L, Douay F, Mench M (2014) Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock: a review. Int J Phytorem 16(10):982–1017. doi:10.1080/15226514.2013.810580

    Article  CAS  Google Scholar 

  • Oraghi AN, Saadatmand S, Niknam V, Khavari-Nejad RA (2014) The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiol Plant 36:3199–3205. doi:10.1007/s11738-014-1686-6

    Article  CAS  Google Scholar 

  • Ouvrard S, Leglize P, Morel JL (2014) PAH phytoremediation: rhizodegradation or rhizoattenuation? Int J Phytoremediation. 16(1):46–61. doi:10.1080/15226514.2012.759527

    Article  CAS  Google Scholar 

  • Öztürk M, Hakeem KR, Faridah-Hanum I, Efe R (2015) Climate change impacts on high-altitude ecosystems. Springer International Publishing Switzerland, Heidelberg. doi:10.1007/978-3-319-12859-7

  • Papazoglou EG, Karantounias GA, Vemmos SN, Bouranis DL (2005) Photosynthesis and growth responses of giant reed (Arundo donax L.) to the trace metals Cd and Ni. Environ Int 31:243–249. doi:10.1016/j.envint.2004.09.022

    Article  CAS  Google Scholar 

  • Pari L, Scarfone A, Santangelo E, Figorilli S, Crognale S, Petruccioli M, Suardi A, Gallucci F, Barontini M (2015) Alternative storage systems of Arundo donax L. and characterization of the stored biomass. Industrial Crops and Products. doi:10.1016/j.indcrop.2015.04.018

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39. doi:10.1146/annurev.arplant.56.032604.144214

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH (2012) Plant accumulation of sulfur’s sister element selenium—potential applications and ecological implications. In: De Kok LJ et al. (eds) Sulfur metabolism in plants, proceedings of the international plant sulfur workshop 1. Springer Science + Business Media, Dordrecht, pp 145–153. doi:10.1007/978-94-007-4450-9_19

  • Pilon-Smits EAH (2015) Selenium in plants. In: Luettge U (ed) Progress in Botany. Springer, Heidelberg, pp 93–107

    Google Scholar 

  • Pilon-Smits EA, Le Duc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20(2):207–212. doi:10.1016/j.copbio.2009.02.001

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Quinn CF (2010) Selenium metabolism in plants. In: Hell R, Mendel R‐R (eds) Cell biology of metals and nutrients. Plant Cell Monographs 17. Springer, Berlin, pp 225–241. doi:10.1007/978-3-642-10613-2_10

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Banuelos GS, Parker DR (2014) Uptake, metabolism, and volatilization of selenium by terrestrial plants. In: Chang AC, Brawer Silva D (eds) Salinity and drainage in San Joaquin Valley, California: Science, Technology, and Policy, Global Issues in Water Policy 5. Springer Science + Business Media, Dordrecht, pp 147–164. doi:10.1007/978-94-007-6851-2_6

  • Pilu R, Bucci A, Badone FC, Landoni M (2012) Giant reed (Arundo donax L.): a weed plant or a promising energy crop? Afr J Biotechnol 11(38):9163–9174. doi:10.5897/AJB11.4182

  • Pilu R, Cassani E, Landoni M, Badone FC, Passera A, Cantaluppi E, Corno L, Adani F (2014) Genetic characterization of an Italian Giant Reed (Arundo donax L.) clones collection: exploiting clonal selection. Euphytica 196:169–181. doi:10.1007/s10681-013-1022-z

    Article  Google Scholar 

  • Pinkerton KE, Rom WN (2014) Global climate change and public health. Respiratory Medicine Series. Springer Science + Business Media, New York. doi:10.1007/978-1-4614-8417-2

  • Pinto PCR, Oliveira C, Costa CA, Gaspar A, Faria T, Ataíde J, Rodrigues AE (2015) Kraft delignification of energy crops in view of pulp production andlignin valorization. Ind Crops Prod 71:153–162. doi:10.1016/j.indcrop.2015.03.069

    Article  CAS  Google Scholar 

  • Pompeiano A, Vita F, Miele S, Guglielminetti L (2013) Freeze tolerance and physiological changes during cold acclimation of giant reed (Arundo donax L.). Grass Forage Sci 70:168–175. doi:10.1111/gfs.12097

    Article  Google Scholar 

  • Pompeiano A, Vita F, Alpi A, Guglielminetti L (2015) Arundo donax L. response to low oxygen stress. Environ Exp Bot 111:147–154. doi:10.1016/j.envexpbot.2014.11.003

    Article  CAS  Google Scholar 

  • Possell M, Hewitt CN, Beerling DJ (2005) The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants. Glob Change Biol 11:60–69

    Article  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Qing X, Zhao X, Hu C, Wang P, Zhang Y, Zhang X, Wang P, Shi H, Jia F, Qu C (2015) Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves. Ecotoxicol Environ Saf 114:179–189. doi:10.1016/j.ecoenv.2015.01.026

    Article  CAS  Google Scholar 

  • Quinn DL, Straker KC, Guo J, Kim S, Thapa S, Kling G, Lee DK, Voigt TB (2015) Stress-tolerant feedstocks for sustainable bioenergy production on marginal land. Bioenerg Res. doi:10.1007/s12155-014-9557-y

  • Ragaglini G, Dragoni F, Simone M, Bonari E (2014) Suitability of giant reed (Arundo donax L.) for anaerobic digestion: effect of harvest time and frequency on the biomethane yield potential. Bioresour Technol 152:107–115. doi:10.1016/j.biortech.2013.11.004

    Article  CAS  Google Scholar 

  • Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytorem 10:133–160. doi:10.1080/15226510801913918

    Article  CAS  Google Scholar 

  • Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant–metal–microbe interactions. Environ Int 53:74–86. doi:10.1016/j.envint.2012.12.009

    Article  CAS  Google Scholar 

  • Reddy PP (2015) Impacts of climate change on agriculture. In: Climate resilient agriculture for ensuring food security, 43. Springer, India. doi:10.1007/978-81-322-2199-9_4

  • Rossa B, TuAers AV, Naidoo G, von Willert DJ (1998) Arundo donax L. (Poaceae)—a C3 species with unusually high photosynthetic capacity. Botanica Acta 111:216–221

    Article  CAS  Google Scholar 

  • Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J Plant Physiol 171(5):85–91. doi:10.1016/j.jplph.2013.09.024

    Article  CAS  Google Scholar 

  • Sánchez E, Scordia D, Lino G, Arias C, Cosentino SL, Nogués S (2015) Salinity and water stress effects on biomass production in different Arundo donax L. clones. BioEnergy Research. doi:10.1007/s12155-015-9652-8

    Google Scholar 

  • Schiavon M, Pilon M, Malagoli M, Pilon-Smits EAH (2015) Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation—a comparison of Stanleya pinnata and Brassicajuncea (Brassicaceae). Front Plant Sci 6:1–13. doi:10.3389/fpls.2015.00002

    Article  Google Scholar 

  • Schnitzler A, Essl F (2015) From horticulture and biofuel to invasion: the spread of Miscanthus taxa in the USA and Europe. Weed Res 55:221–225. doi:10.1111/wre.12141

    Article  Google Scholar 

  • Scordia D, Cosentino SL, Lee JW, Jeffries TW (2011) Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.). Biomass Bioenergy 35(7):3018–3024. doi:10.1016/j.biombioe.2011.03.046

    Article  CAS  Google Scholar 

  • Scordia D, Cosentino SL, Lee J-W, Jeffries TW (2012) Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054. Biomass Bioenergy 39:296–305. doi:10.1016/j.biombioe.2012.01.023

    Article  CAS  Google Scholar 

  • Scordia D, Cosentino SL, Jeffries TW (2013) Enzymatic hydrolysis, simultaneous saccharification and ethanol fermentation of oxalic acid pretreated giant reed (Arundo donax L.). Ind Crops Prod 49:392–399. doi:10.1016/j.indcrop.2013.05.031

    Article  CAS  Google Scholar 

  • Sejian V, Raghavendra B, Soren NM, Malik PK, Ravindra JP, Prasad CS, Lal R (2015). Introduction to concepts of climate change impact on livestock and its adaptation and mitigation. In: Sejian V et al (eds) Climate change impact on livestock: adaptation and mitigation, 1. Springer, India, pp 1–23. doi:10.1007/978-81-322-2265-1_1

  • Sheoran V, Sheoran A (2015) Biotechnological aspects of soil decontamination. In: Pacheco Torgal F et al. (eds) Biotechnologies and biomimetics for civil engineering. Springer International Publishing Switzerland, Heidelberg, pp 373–410. doi:10.1007/978-3-319-09287-4_17

  • Sherameti I, Varma A (2015) Heavy metal contamination of soils monitoring and remediation. Soil biology 44. doi:10.1007/978-3-319-14526-6. (Springer International Publishing Switzerland)

  • Shisler JL, Senkevich TG, Berry MJ, Moss B (1998) Ultraviolet-induced cell death blocked by a selenoprotein from a human dermatotropic poxvirus. Science 279:102–105. doi:10.1126/science.279.5347.102

    Article  CAS  Google Scholar 

  • Smith P, Olesen JE (2010) Synergies between the mitigation of, and adaptation to, climate change in agriculture. GCB Bioenergy 148:543–552. doi:10.1017/S0021859610000341

    CAS  Google Scholar 

  • Stüeken EE, Buick R, Anbar AD (2015) Selenium isotopes support free O2 in the latest Archean. Geology 43:259–262. doi:10.1130/G36218.1

    Article  CAS  Google Scholar 

  • Takahashi W, Takamizo T (2012) Molecular breeding of grasses by transgenic approaches for biofuel production, transgenic plants—advances and limitations, PhD. In: Yelda Ozden Ç (ed) ISBN: 978-953-51-0181-9, InTech, http://www.intechopen.com/books/transgenic-plants-advancesand-limitations/molecular-breeding-of-grasses-by-transgenic-approaches-for-biofuelproduction

  • Tang H, Liu Y, Gong X, Zeng G, Zheng B, Wang D, Sun Z, Zhou L, Zeng X (2015) Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea L. Gaud.) under cadmium stress. Environ Sci Pollut Res 22:9999–10008. doi:10.1007/s11356-015-4187-2

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng Article ID 939161, 31. doi:10.1155/2011/939161

  • Terry N, Carlson C, Raab TK, Zayed AM (1992) Rates of selenium volatilization among crop species. J Environ Qual 21:341–344

    Article  CAS  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Ann Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Chung IM (2015) Selenium, putrescine, and cadmium influence health-promoting phytochemicals and molecular-level effects on turnip (Brassica rapa ssp. rapa). Food Chem 173:185–193. doi:10.1016/j.foodchem.2014.10.012

    Article  CAS  Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600. doi:10.1126/science.1133306

    Article  CAS  Google Scholar 

  • Tripathi V, Abhilash PC, Singh HB, Singh N, Patra DD (2015a) Effect of temperature variation on lindane dissipation and microbial activity in soil. Ecol Eng 79:54–59. doi:10.1016/j.ecoleng.2015.03.010

    Article  Google Scholar 

  • Tripathia V, Fracetob LF, Abhilash PC (2015b) Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant-microbe-pollutant and climate nexus. Ecol Eng 82:330–335. doi:10.1016/j.ecoleng.2015.05.027

    Article  Google Scholar 

  • Truu J, Truu M, Espenberg M, Nõlvak H, Juhanson J (2015) Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. Open Biotechnol J 9. doi:10.2174/1874070720150430E009

  • Turanov AA, Xu X-M, Carlson BA, Yoo M-H, Gladyshev VN, Hatfield DL (2011) Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis. Adv Nutr 2:122–128. doi:10.3945/an.110.000265

    Article  CAS  Google Scholar 

  • Ullah A, Mushtaq H, Ali H, Farooq M, Munis H, Javed MT, Chaudhary HJ (2015) Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environ Sci Pollut Res. doi:10.1007/s11356-014-3699-5

    Google Scholar 

  • US EPA (2004) Cleaning up the nation’s waste sites: markets and technology trends. Office of solid waste and emergency response, Washington DC, pp 3–9

  • Vallini G, Di Gregorio S, Lampis S (2005) Rhizosphere-induced selenium precipitation for possible applications in phytoremediation of Se polluted effl uents. Z Naturforsch 60:349–356

    CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334. doi:10.1007/s11104-012-1287-3

    Article  CAS  Google Scholar 

  • van Oosten MJ, Maggio A (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot. doi:10.1016/j.envexpbot.2014.11.010

    Google Scholar 

  • Viola E, Zimbardi F, Valerio V, Villone A (2015) Effect of ripeness and drying process on sugar and ethanol production from giant reed (Arundo donax L.). AIMS. Bioengineering 2(2):29–39. doi:10.3934/bioeng.2015.2.29

    Article  Google Scholar 

  • Vishnoi SR, Srivastava PN (2008) Phytoremediation-green for environmental clean. In: The 12th world lake conference, pp 1016–1021

  • Vriens B, Lenz M, Charlet L, Berg M, Winkel LHE (2014a) Natural wetland emissions of methylated trace elements. Nat Commun 5:3035–1811

    Article  CAS  Google Scholar 

  • Vriens B, Ammann AA, Hagendorfer H, Lenz M, Berg M, Winkel LHE (2014b) Quantification of methylated selenium, sulfur and arsenic in the environment. PLoS ONE 9:e102906. doi:10.1371/journal.pone.0102906

    Article  CAS  Google Scholar 

  • Vriens B, Mathis M, Winkel LHE, Berg M (2015) Quantification of volatile-alkylated selenium and sulfur in complex aqueous media using solid-phase microextraction. J Chromatogr A. doi:10.1016/j.chroma.2015.06.054

    Google Scholar 

  • Wang X, Tam NF, Fu S, Ametkhan A, Ouyang Y, Ye Z (2014) Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). Ann Bot 114(2):271–278. doi:10.1093/aob/mcu117

    Article  CAS  Google Scholar 

  • Wen H, Carignan J (2007) Reviews on atmospheric selenium: emissions, speciation and fate. Atmos Environ 41:7151–7165. doi:10.1016/j.atmosenv.2007.07.035

    Article  CAS  Google Scholar 

  • Williams CMJ, Biswas TK, Black ID, Marton L, Czako M, Harris PL, Pollock R, Heading S, Virtue G (2009) Use of poor quality water to produce high biomass yields of giant reed (Arundo donax L.) on marginal lands for biofuel or pulp/paper. ISHS Acta Horticult 806:595–602

    Article  Google Scholar 

  • Winkel LHE, Blazina T, Vriens B, Schubert R, Johnson CA (2014) Role of climatic factors on the terrestrial distribution of selenium. In: Lin B, Yin (eds) Selenium in the environment and human health. Taylor & Francis Group, London, pp 3–4

  • Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015) Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients 7:4199–4239. doi:10.3390/nu7064199

    Article  CAS  Google Scholar 

  • Wu L (2004) Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotoxicol Environ Saf 57:257–269

    Article  CAS  Google Scholar 

  • Wu L, Huang Z-Z (1991) Selenium accumulation and selenium tolerance of salt grass from soils with elevated concentrations of Se and salinity. Ecotoxicol Environ Saf 22:267–282

    Article  CAS  Google Scholar 

  • Wu XJ, Song B, Wu T, Li X Li (2014) Geochemical processes controlling dissolved selenium in the Changjiang (Yangtze) Estuary and its adjacent waters. Acta Oceanol Sinica 33(10):19–29. doi:10.1007/s13131-014-0537-z

    Article  CAS  Google Scholar 

  • Wu Z, Bañuelos GS, Yin X, Lin Z, Terry N, Liu Y, Yuan L, Li M (2015) Phytoremediation of the metalloid selenium in soil and water. In: Ansari AA et al (eds) Phytoremediation: Management of environmental contaminants, vol 2. Springer International Publishing Switzerland, Heidelberg, pp 171–75. doi:10.1007/978-3-319-10969-5_13

  • Xu XM, Turanov AA, Carlson BA, Yoo MH, Everley RA, Nandakumar R, Sorokina I, Gygi SP, Hatfield DL (2007) Biosynthesis of selenocysteine on its tRNA in eukaryotes. PLoS Biol 5:e4. doi:10.1371/journal.pbio.0050004

    Article  CAS  Google Scholar 

  • Yang L, Li Y (2014) Anaerobic digestion of giant reed for methane production. Bioresour Technol 171:233–239. doi:10.1016/j.biortech.2014.08.051

    Article  CAS  Google Scholar 

  • Yasin M, El Mehdawi AF, Jahn CE, Anwar A, Turner MFS, Faisal M, Pilon-Smits EAH (2015a) Seleniferous soils as a source for production of selenium-enriched foods and potential of bacteria to enhance plant selenium uptake. Plant Soil 386:385–394. doi:10.1007/s11104-014-2270-y

    Article  CAS  Google Scholar 

  • Yasin M, El-Mehdawi AF, Pilon-Smits EAH, Faisal M (2015b) Selenium-fortified wheat: potential of microbes for biofortification of selenium and other essential nutrients. Int J Phytorem 17(8):777–786. doi:10.1080/15226514.2014.987372

    Article  CAS  Google Scholar 

  • Yuan L, Yin X, Zhu Y, Li F, Huang Y, Liu Y, Lin Z (2012). Selenium in plants and soils, and selenosis in Enshi, China: implications for selenium biofortification. In: Yin X, Yuan L (eds) Phytoremediation and biofortification. Springer Briefs in Green Chemistry for Sustainability, pp 1–31. doi:10.1007/978-94-007-1439-7_2

  • Zawislanski PT, Jayaweera GR, Frankenberger Jr WT, Wu L (1996) The pond 2 selenium volatilization study: a synthesis of five years of experimental results, 1990–1995. A joint report to the Bureau of Reclamation; Earth Sciences Devision: Berkeley, CA

  • Zegada-Lizarazu W, Elbersen W, Cosentino SL, Zatta A, Alexopoulou E, Monti A (2010) Agronomic aspects of future energy crops in Europe. Biofuels Bioprod Bioref 4(6):674–691. 10.1002/bbb.242

    Article  CAS  Google Scholar 

  • Zhang H (2014) Interactions of mercury and selenium in soil-rice system. In: Zhang H (ed) Impacts of selenium on the biogeochemical cycles of mercury in terrestrial ecosystems in mercury mining areas. Springer Theses. Springer, Berlin, pp 135–149. doi:10.1007/978-3-642-54919-9_10

  • Zhang H, Feng X, Jiang C, Li Q, Liu Y, Gu C, Shang L, Li P, Lin Y, Larssen T (2014) Understanding the paradox of selenium contamination in mercury mining areas: high soil content and low accumulation in rice. Environ Pollut 188:27–36. doi:10.1016/j.envpol.2014.01.012

    Article  CAS  Google Scholar 

  • Zhu Y-G, Pilon-Smits EAH, Zhao F-J, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14(8):436–442. doi:10.1016/j.tplants.2009.06.006

    Article  CAS  Google Scholar 

  • Zorrig W, Rabhi M, Ferchichi S, Smaoui A, Abdelly C (2012) Phytodesalination: a solution for salt-affected soils in arid and semi-arid regions. J Arid Land Stud 22:299–302

    Google Scholar 

Download references

Acknowledgments

The writing of this manuscript was supported by the Hungarian Ministry of Education and Culture (Hungarian Scholarship Board, HSB and the Balassi Institute). Authors also thank the outstanding contribution of STDF research teams (Science and Technology Development Fund, Egypt) and MBMF/DLR (the Federal Ministry of Education and Research of the Federal Republic of Germany) (Project ID 5310) for their help. Great support from this German-Egyptian Research Fund (GERF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan R. El-Ramady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ramady, H.R., Abdalla, N., Alshaal, T. et al. Giant reed for selenium phytoremediation under changing climate. Environ Chem Lett 13, 359–380 (2015). https://doi.org/10.1007/s10311-015-0523-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0523-5

Keywords

Navigation