Skip to main content

Advances in Breeding for Resistance to Insects

  • Chapter
  • First Online:
Breeding Insect Resistant Crops for Sustainable Agriculture

Abstract

Traditionally, researcher has put more focus on disease resistance than on insect resistance, but the adverse effects of excessive use of pesticides on human health, environment, phyto-sanitation, market access, and global trade have led to renewed interest in breeding for resistance to insects. The development of insect-resistant crops is a sustainable way to manage pests. In this chapter, historical impact of resistance to insects in ensuring food security has been cited. The identification of new sources of resistance to insects and better understanding of resistance mechanisms have opened new avenues in the field of host-plant resistance (HPR). New insights into structural and functional aspects of genes conferring resistance to insects (R-genes) during the past two-three decades and their proper utilization, by researchers, have been discussed. The breeding methods for developing resistance to insects in self- and cross-pollinated crops have been elaborated. The findings on complex host-pest interactions and overlapping of controlling genes or quantitative trait loci (QTL) for resistance to biotic and abiotic stresses emphasizes the adoption of holistic approaches to develop insect-resistant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel CA (1998) Introgressing a new source of host plant resistance to European corn borer into two elite maize inbred lines. Ph.D. Dissertation, Iowa State University, Iowa

    Google Scholar 

  • Agrawal AA (2010) Current trends in the evolutionary ecology of plant defense. Funct Ecol 25:420–423

    Article  Google Scholar 

  • Agarwal BL, House LR (1982) Breeding for Pest Resistance in sorghum. In: Sorghum in the eighties: Proceedings of the international symposium on Sorghum, Patancheru, India, 2–7 Nov 1981

    Google Scholar 

  • Agarwal RA, Banerjee SK, Singh M et al (1976) Resistance to insects in cotton. II. To pink bollworm, Pectinophora gossypiella (Saunders). Cotton Fibr Trop 31:217–221

    Google Scholar 

  • Agrios GN (1978) Plant pathology, 2nd edn. Academic, London

    Google Scholar 

  • Agrios GN (2006) Plant diseases. Elsevier, India

    Google Scholar 

  • Atamian HS, Eulgem T, Kaloshian I (2012) SIWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Planta 235:299–309

    Article  CAS  PubMed  Google Scholar 

  • Athwal DS, Pathak MD, Bacalangco EH et al (1971) Genetics of resistance to brown planthoppers and green leafhoppers in Oryza sativa L. Crop Sci 11:147–150

    Article  Google Scholar 

  • Atwal AS, Dhaliwal GS (2015) Agricultural pests of South Asia and their management. Kalyani Publishers, New Delhi

    Google Scholar 

  • Balta H, Karakas MO, Senturk AF et al (2014) Identification of an AFLP marker linked with yellow rust resistance in wheat (Triticum aestivum L.) Turk J Biol 38:371–379

    Article  CAS  Google Scholar 

  • Basky Z (2003) Biotypic and pest status differences between Hungarian and South African populations of Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae). Pest Manag Sci 59:1152–1158

    Article  CAS  PubMed  Google Scholar 

  • Bergau N, Bennewitz S, Syrowatka F et al (2015) The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites. BMC Plant Biol 15:289

    Article  PubMed  PubMed Central  Google Scholar 

  • Bindra OS (1985) Relation of cotton cultivars to the cotton-pest problem in the Sudan Gezira. Euphytica 34:849–856

    Article  Google Scholar 

  • Boerma HR, Walker DR (2005) Discovery and utilization of QTLs for insect resistance in soybean. Genetica 123(1–2):181–189

    Article  PubMed  Google Scholar 

  • Bosque-Perez NA, Buddenhagen IW (1992) The development of host-plant resistance to insect pests: outlook for the tropics. In: proceedings 8th international symposium insect plant relationships, Kluwer, Dordrecht, March 9–13, pp 235–249

    Google Scholar 

  • Brim CA, Stuber CW (1973) Application of genetic male sterility to recurrent selection schemes in soybeans. Crop Sci 13:528–530

    Article  Google Scholar 

  • Broekgaarden C, Snoeren TJA, Dicke M et al (2011) Exploiting natural variation to identify insect-resistance genes. Plant Biotechnol J 9(8):819–825

    Article  CAS  PubMed  Google Scholar 

  • Broekgaarden C, Bucher J, Bac-Molenaar J et al (2015) Novel genes affecting the interaction between the cabbage whitefly and Arabidopsis uncovered by genome-wide association mapping. PLoS One 10(12):1–14

    Article  CAS  Google Scholar 

  • Brotman Y, Silberstein L, Kovalski I et al (2002) Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance. Theor Appl Genet 104:1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Brown JKM (1995) Pathogens response to management of disease resistance genes. Adv Plant Pathol 11:73–102

    Google Scholar 

  • Burton A, Widstorm NW (2001) Mass selection for agronomic performance and resistance to ear feeding insects in three corn populations. Maydica 46:207–212

    Google Scholar 

  • Cambron SE, Buntin GD, Weisz R et al (2010) Virulence in (Diptera: Cecidomyiidae) field collections from the southeastern United states to 21 resistance genes in wheat. J Econ Entomol 103:2229–2235

    Article  PubMed  Google Scholar 

  • Cartwright WB, Wiebe GA (1936) Inheritance of resistance to the Hessian fly in the Wheat crosses Dawson x Big Club. J Agric Res 52:691–695

    Google Scholar 

  • Casteel CL, Walling LL, Paine TD (2006) Behavior and biology of the tomato psyllid, Bactericera cockerelli, in response to the Mi-1.2 gene. Entomol Exp Appl 121:67–72

    Article  CAS  Google Scholar 

  • Channamallikarjuna V, Sonah H, Prasad M et al (2010) Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice. Mol Breed 25:155–166

    Article  CAS  Google Scholar 

  • Channarayappa SG, Muniyappa V, Frist RH (1992) Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Can J Bot 70:2184–2192

    Article  Google Scholar 

  • Chatzigeorgiou AC, Papadopoulos NT, Prophetou-Athanasiadou DA (2010) Effect of cotton cultivars on the oviposition preference of pink bollworm (Lepidoptera: Gelechiidae). J Pest Sci 83(3):289–296

    Article  Google Scholar 

  • Chen MS (2008) Inducible direct plant defense against insect herbivores: a review. Insect Sci 15:101–114

    Article  CAS  Google Scholar 

  • Chen LC, Chang WL (1971) Inheritance of rice to brown planthoppers in rice variety Mudgo. Taiwan Agric Res 20:57–60

    Google Scholar 

  • Chen MS, Fellers JP, Stuart JJ et al (2004) A group of related cDNAs encoding secreted proteins from Mayetiola destructor (Say) salivary glands. Insect Mol Biol 13:101–108

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Fellers JP, Zhu YC et al (2006) A super-family of genes coding for secreted salivary gland proteins from the Mayetiola destructor. J Insect Sci 6:12

    Article  PubMed Central  Google Scholar 

  • Clement SL, Quisenberry SS (eds) (1999) Global plant genetic resources for insect-resistant crops. CRC, Boca Raton

    Google Scholar 

  • Comstock RE (1964) Selection procedures in corn improvement. Proceedings of the Annual Corn & Sorghum Industry Research Conference, vol 19, pp 87–94

    Google Scholar 

  • Crow JF (1957) Genetics of insect resistance to chemicals. Annu Rev Entomol 2:227–246

    Article  CAS  Google Scholar 

  • Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511

    Article  CAS  PubMed  Google Scholar 

  • Culliney T (2014) Crop losses to arthropods. In: Pimentel D, Peshin R (eds) Integrated pest management reviews, vol 3. Springer, Dordrecht, pp 201–225

    Chapter  Google Scholar 

  • D’Alessandro M, Turlings TCJ (2006) Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32

    Article  PubMed  Google Scholar 

  • Da Cunha L, Sreerekha MV, Mackey D (2007) Defense suppression by virulence effectors of bacterial phytopathogens. Curr Opin Plant Biol 10:349–357

    Article  PubMed  CAS  Google Scholar 

  • Dangle JL, Jones JD (2001) Plant pathogens and integrated defense responses to infection. Nature 411(6839):826–833

    Article  Google Scholar 

  • Davila ONH, Kruijer W, Gort G et al (2017) Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis Thaliana. New Phytol 213(2):838–851

    Article  CAS  Google Scholar 

  • Dhaliwal GS, Singh R (eds) (2004) Host plant resistance to insects: concepts and applications. Panima publ

    Google Scholar 

  • Dhaliwal GS, Jindal V, Bharathi M (2015) Crop losses due to insect pests: global and Indian scenario. Indian J Entomol 77(2):165–168

    Article  Google Scholar 

  • Dhillon BS, Granados RG, Khehra AS (1993) Recurrent selection for intrapopulation improvement for insect resistance. Cereal Res Commun 21(4):331–335

    Google Scholar 

  • Dhillon BS, Khehra AS (1989) Modified S1 recurrent selection in maize improvement. Crop Sci 29:226–228

    Article  Google Scholar 

  • Dhillion MK, Sharma HC (2012) Paradigm shifts in research on host plant resistance to insect pest resistance to insect pests. Indian J Plant Protect 40(1):1–11

    Google Scholar 

  • Din ZM, Malik TA, Azhar FM et al (2016) Natural resistance against insect pests in cotton. J Anim Plant Sci 25(5):1346–1353

    Google Scholar 

  • Dobzhansky T (1951) Genetics and the origin of species, 3rd edn. Columbia University Press, New York

    Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Gen 11:539–548

    Article  CAS  Google Scholar 

  • Dossett M, Finn CH (2010) Identification of resistance to the large raspberry aphid in black raspberry. J Am Soc Hortic Sci 135(5):438–444

    Google Scholar 

  • Du B, Zhanga W, Liua B et al (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci U S A (106, 52):22163–22168

    Google Scholar 

  • Emden HV (2002) Mechanisms of resistance: antibiosis, antixenosis, tolerance, nutrition. In: Pimental D (ed) Encyclopedia of pest management. CRC Press, Boca Raton, pp 483–485

    Google Scholar 

  • Elias LA (1970) Maize resistance to stalk borer in Zeadiatera Box and Distracea Building at five localities in Mexico. Ph D Dissertation, Kansas State University

    Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3(4):278–284

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10:71–78

    Article  CAS  PubMed  Google Scholar 

  • Finckh M, Gacek E, Goyeau H (2000) Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie EDP Sci 20:813–837

    Article  Google Scholar 

  • Flor HH (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–669

    Google Scholar 

  • Flor HH (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54

    Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Fujita D, Kohli A, Horgan FG (2016) Rice resistance to planthoppers and leafhoppers. Crit Rev Plant Sci 32(3):162–191

    Article  CAS  Google Scholar 

  • Gallun RL, Khush GS (1980) Genetic factors affecting expression and stability of resistance. In: Maxwell FG, Jennings P (eds) Breeding plants resistant to insects. John Wiley & Sons, New York

    Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156(2):145–169

    Article  CAS  Google Scholar 

  • Gillmore EC Jr (1964) Suggested method of using reciprocal recurrent selection in some naturally self pollinated species. Crop Sci 4:323–325

    Article  Google Scholar 

  • Gould F (1986) Simulation models for predicting durability of insect-resistant germplasm: a deterministic diploid, two locus model. Environ Entomol 15:1–10

    Article  Google Scholar 

  • Grover P (1995) Hypersensitive response of wheat to the Hessian fly. Entomol Exp Appl 74:283–294

    Article  Google Scholar 

  • Hallauer AR, Darrah LL (1985) Compendium of recurrent selection methods and their application. Crit Rev Plant Sci 3:1–33

    Article  Google Scholar 

  • Hanson CH, Busbice TH, Hill RR et al (1972) Directed mass selection for developing multiple pest resistance and conserving germplasm in alfalfa. J Environ Qual 1:106–111

    Article  Google Scholar 

  • Hao P, Liu C, Wang Y et al (2008) Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant Physiol 146(4):1810–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harlan JR, De Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Harlan HV, Pope MN (1922) The use and value of back-crosses in small-grain breeding. J Hered 13:319–322

    Article  Google Scholar 

  • Hartman JB, St Clair DA (1998) Variation for insect resistance and horticultural traits in tomato inbred backcross populations derived from Lycopersicon pennellii. Crop Sci 38(6):1501–1508

    Article  Google Scholar 

  • Heinrichs EA (1986) Perspectives and directions for the continued development of insect-resistant varieties. Agric Ecosyst Environ 18:9–36

    Article  Google Scholar 

  • Higgins VJ, Lu H, Xing T et al (1998) The gene-for-gene concept and beyond: interactions and signals. Can J Plant Pathol 20:150–157

    Article  CAS  Google Scholar 

  • Himabindu K, Suneetha K, Sama VSAK et al (2010) A new rice gall midge resistance gene in the breeding line CR57-MR1523, mapping with flanking markers and development of NILs. Euphytica 174:179–187

    Article  CAS  Google Scholar 

  • Horber E (1980) Types and classification of resistance in: breeding plants resistant to insects. John Wiley & Sons, New York

    Google Scholar 

  • Howe GA, Lightner J, Browse J et al (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8:2067–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Xiao C, He Y (2016) Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice. Rice 9:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain B (2015) Modernization in plant breeding approaches for improving biotic stress resistance in crop plants. Turk J Agric Forestr 39:1406–1476

    Google Scholar 

  • International Cotton Advisory Committee (1997) Bt cotton is spreading. ICAC Recorder 15(4):5–8

    Google Scholar 

  • Ishihama N, Yoshioka H (2012) Post-translational regulation of WRKY transcription factors in plant immunity. Curr Opin Plant Biol 15:431–437

    Article  CAS  PubMed  Google Scholar 

  • James C (2015) 20th anniversary of global commercialization of biotech crops and biotech crop highlights in 2015. International service for the acquisitions of agri-biotech applications, Ithaca

    Google Scholar 

  • Jander G, Howe G (2008) Plant interactions with arthropod herbivores: state of the field. Plant Physiol 146:801–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jena KK, Kim SM (2010) Current status of brown planthopper (BPH) resistance and genetics. Rice 3:161–171

    Article  Google Scholar 

  • Jena KK, Khush GS (1990) Introgression of genes from Oryza officinalis well exWatt to cultivated rice, O. sativa L. Theor Appl Genet 80:737–745

    Article  CAS  PubMed  Google Scholar 

  • Jing S, Zhao Y, Du B et al (2017) Genomics of interaction between the brown planthopper and rice. Curr Opin Insect Sci 19:82–87

    Article  PubMed  Google Scholar 

  • Jenkins JN (1981) Breeding for insect resistance. In: Frey KJ (ed) Plant breeding 11. Iowa state University Press, Ames, pp 291–308

    Google Scholar 

  • Johnson C, Boden E, Arias J (2003) Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15:1846–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DA, Jones JDG (1997) The role of leucine-rich repeat proteins in plant defences. Adv Bot Res Incorp Adv Plant Pathol 24:90–167

    Google Scholar 

  • Kaloshian I (2004) Gene-for-gene disease resistance: bridging insect pest and pathogen defense. J Chem Ecol 30:2421–2439

    Article  Google Scholar 

  • Kang MS (1994) Applied quantitative genetics. M.S. Kang Publishers, Baton Rouge

    Google Scholar 

  • Kang MS, Zhang Y, Magari R (1995) Combining ability for maize weevil preference of maize grain. Crop Sci 35:1556–1559

    Article  Google Scholar 

  • Kang MS, Subudhi PK, Niranjan B et al (2007) Crop breeding methodologies: classic and modern. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell Publishing Professional, Ames, pp 1–40

    Chapter  Google Scholar 

  • Kaplan I, Dively GP, Denno RF (2009) The costs of anti-herbivore defense traits in agricultural crop plants: a case study involving leafhoppers and trichomes. Ecol Appl 19:864–872

    Article  PubMed  Google Scholar 

  • Karban R, Baldwin IT, Baxter KJ et al (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71

    Article  CAS  PubMed  Google Scholar 

  • Katagiri F, Lam E, Chua NH (1989) Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340:727–730

    Article  CAS  PubMed  Google Scholar 

  • Kavitha K, Reddy KD (2012) Screening techniques for different insect pests in crop plants Regional Agricultural Research Station (ANGRAU), Palem, Mahabubnagar, Andhra Pradesh (509 215). Indian Int J Bioresource Stress Manag 3(2):188–195

    Google Scholar 

  • Kennedy GG, Barbour JD (1992) Resistance in natural and managed systems. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens: ecology, evolution, and genetics. Univ Chicago Press, Chicago, pp 13–41

    Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Khan ZR, Agarwal RA (1984) Oviposition preference of jassid, Amrasca biguttulaIshida on cotton. J Ent Res 8:78–80

    Google Scholar 

  • Khush GS (1977) Breeding for resistance in rice. Ann New York Acad Sci 287:–296

    Google Scholar 

  • Khush GS (1980) Breeding for multiple diseases and insect resistance in rice. In: Harris MK (ed) Biology and breeding for resistance to arthropods and pathogens in agricultural plants. Texa Agric Exp Stn Bull.

    Google Scholar 

  • Klingler J, Kovalski I, Silberstein L et al (2001) Mapping of cotton-melon aphid resistance in melon. J Am Soc Hortic Sci 126(1):56–63

    CAS  Google Scholar 

  • Klignler J, Creasy R, Gao LL et al (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137:1445–1455

    Article  CAS  Google Scholar 

  • Klingler JP, Nair RM, Edwards OR et al (2009) A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid. J Exp Bot 60:4115–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klun JA, Brindley TA (1966) Role of 6-methoxybenzoxalinone in inbred resistance of host plant (maize) to first-brood larvae of European com borer. J Econ Entomol 59:711–718

    Article  CAS  Google Scholar 

  • Koch KG, Chapman K, Louis J et al (2016) Plant tolerance: a unique approach to control hemipteran pests. Plant Sci 7:1363

    Google Scholar 

  • Kogan M, Ortman EE (1978) Antixenosis- a new term proposed to replace Painter’s ‘nonpreference’ modality of resistance. Bull Entomol Soc Am 24:175–176

    Google Scholar 

  • Kornegay JL, Cardona C (1990) Development of an appropriate breeding scheme for tolerance to Empoasca kraemeri in common bean. Euphytica 47(3):223–231

    Google Scholar 

  • Kosma DK, Nemacheck JA, Jenks MA et al (2010) Changes in properties of wheat leaf cuticle during interactions with Hessian fly. Plant J 63(1):31–43

    CAS  PubMed  Google Scholar 

  • Kumar A, Jain A, Sahu RK et al (2005) Genetic analysis of resistance genes for the rice gall midge in two rice genotypes. Crop Sci 45:1631–1635

    Article  CAS  Google Scholar 

  • Lee EA, Byrne PF, McMullen MD, Snook ME, Wiseman BR, Widstrom NW, Coe EH (1998) Genetic mechanisms underlying apimaysin and maysin synthesis and corn earworm antibiosis in maize (Zea mays L.). Genetics 149(4):1997–2006

    Google Scholar 

  • Li Y, Hill CB, Carlson SR et al (2007) Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group. Mol Breed 19:25–34

    Article  CAS  Google Scholar 

  • Liu S, Wang H, Zhang J et al (2005) In vitro mutation and selection of double-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Rep 24:133–144

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Lei L, Powers C et al (2015) TaXA21-A1 on chromosome 5AL is associated with resistance to multiple pests in wheat. Theor Appl Genet 129(2):345–355

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Chen L, Liu Y et al (2016) Marker assisted pyramiding of two brown planthopper resistance genes, Bph3 and Bph27 (t), into elite rice cultivars. Rice 9:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Mack RN, Spencer CHB, deFur PL et al (2002) Predicting invasions of nonindigenous plants and plant pests. National Research Council, National Academy of Sciences, Washington DC

    Google Scholar 

  • Mahabal R (2014) Plant breeding methods. PHI Learning, New Delhi

    Google Scholar 

  • Marshall DR (1977) The advantages and hazards of genetic homogeneity. In: Day PR (ed) The genetic basis of epidemics in agriculture. The New York Academy of Sciences, New York, pp 1–20

    Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J et al (1993) Map based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  CAS  PubMed  Google Scholar 

  • Mather K, Jinks JL (1971) Biometrical genetics, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Maxwell FG, Jennings PR (eds) (1980) Breeding plants resistant to insects. Wiley, New York

    Google Scholar 

  • Maxwell FG, Jenkins JN, Parrott WL (1972) Resistance of plants to insects. Adv Agron 24:187–265

    Article  Google Scholar 

  • McCarty JC, Jenkins JN, Parrott WL (1987) Genetic resistance to boll weevil oviposition in primitive cotton. Crop Sci 27:263–264

    Article  Google Scholar 

  • McDonald MJ, Ohm HW, Rinehart KD et al (2014) H33: a wheat gene providing resistance for the southeastern United States. Crop Sci 54:2045–2053

    Article  Google Scholar 

  • McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol 21:178–183

    Article  CAS  PubMed  Google Scholar 

  • Melander AL (1914) Can insects become resistant to sprays? J Econ Entomol 7:167–172

    Article  Google Scholar 

  • Mendelsohn R, Balick MJ (1995) The value of undiscovered pharmaceuticals in tropical forests. Econ Bot 49(2):223–228

    Article  Google Scholar 

  • Mihm JA (1985) Breeding for host plant resistance to maize stem borers. Insect Sci Applic 6:369–377

    Google Scholar 

  • Mundt CC (1994) Techniques to manage pathogen co-evolution with host plants to prolong resistance. In: Teng PS, Heong KL, Moody K (eds) Rice pest science and management. International Rice Research Institute, Los Banos, pp 193–205

    Google Scholar 

  • Mundt CC (2014) Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol 10(1):446–455

    Article  Google Scholar 

  • Mutschler MA, Doerge RW, Liu SC (1996) QTL analysis of pest resistance in the wild tomato Lycopersicon pennellii: QTLs controlling acyl sugar level and composition. Theor Appl Genet 92(6):709–718

    Article  CAS  PubMed  Google Scholar 

  • Myint K, Fujita D, Matsumura M et al (2012) Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stal]) in the rice cultivar ADR52. Theor Appl Genet 124:495–504

    Article  CAS  PubMed  Google Scholar 

  • Narayanan SS, Singh P (1994) Resistance to Heliothis and other serious insect pests in Gossypium species – a review. J Indian Soc Cotton Improv 19:10–24

    Google Scholar 

  • Nombela G, Williamson VM, Muniz M et al (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Pl-Microb Intera 16:645–649

    Article  CAS  Google Scholar 

  • Ogbonnaya FC, Seah S, Delibes A et al (2001) Molecular-genetic characterization of a new nematode resistance gene in wheat. Theor Appl Genet 102:623–629

    Article  CAS  Google Scholar 

  • Olivas NHD, Kruijer W, Gort G, Wijnen CL, van Loon JJA, Dicke M (2017) Genome‐wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana. New Phytol 213(2):838–851. doi:10.1111/nph.14165

  • Painter RH (1951) Insect resistance in crop plants. Macmillan, New York

    Google Scholar 

  • Panda N (1979) Principles of host-plant resistance to insect-pests. Allanheld, Osmun and Co. and Universe Books, New York

    Google Scholar 

  • Panda N, Khush GS (1995) Host plant resistance to insects. CAB International, Wallingford

    Google Scholar 

  • Parnell FR (1925) In: Joseph H (ed) The application of genetics to cotton improvement. Cambridge University Press, Cambridge

    Google Scholar 

  • Peferoen M (1997) Progress and prospects for field use of Bt genes in crops. Tibtech 15:173–177

    Article  CAS  Google Scholar 

  • Peng J, Wang H, Haley SD et al (2007) Molecular mapping of the Russian wheat aphid resistance gene Dn2414 in wheat. Crop Sci 47:2418–2429

    Article  CAS  Google Scholar 

  • Pimentel D, Peshin R (eds) (2014) Integrated pest management: pesticide problems, vol 3. Springer, Dordrecht

    Google Scholar 

  • Plaisted RL, Tingey WM, Steffens JC (1992) The germplasm release of NYL 235-4, a clone with resistance to the Colorado potato beetle. Am Potato J 69:843–846

    Article  Google Scholar 

  • Qiu Y, Guo J, Jing S et al (2010) High-resolution mapping of the brown planthopper resistance gene Bph6 in rice and characterizing its resistance in the 9311 and Nipponbare near isogenic backgrounds. Theor Appl Genet 121:1601–1611

    Article  PubMed  Google Scholar 

  • Qiu YF, Guo JP, Jing SQ, Zhu LL, He GC (2014) Fine mapping of the rice brown planthopper resistance gene Bph7 and characterization of its resistance in the 93–11 background. Euphytica 198(3):369–379

    Google Scholar 

  • Qu S, Liu G, Zhou B et al (2006) The broad-Spectrum blast resistance gene Pi9 encodes a nucleotide-binding site- leucine rich repeat protein and is a member of a multi gene family in rice. Genetics 172(3):1901–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramalho FS, McCarty JC Jr, Jenkins JN et al (1984) Distribution of tobacco budworm larvae within cotton plants. J Econ Ent 77:591–594

    Article  Google Scholar 

  • Renwick JAA, Chew FS (1994) Oviposition behavior in Lepidoptera. Annu Rev Entomol 39:377–400

    Article  Google Scholar 

  • Robinson JF, Klun JA, Guthrie WD, Brindley TA (1982) European corn borer leaf feeding resistance. A simplified technique for determining relative differences in concentrations of 6-methoxybenzox-azolinone (Lepidoptera: Pyralidae). J Kansas Entomol Soc 55:297–301

    Google Scholar 

  • Rojanaaridpiched C, Gracen VE, Everett HL (1984) Multiple factor resistance in maize to European corn borer. Maydica 29:305–315

    Google Scholar 

  • Rossi M, Goggin FL, Milligan SB et al (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci U S A 95:950–954

    Article  Google Scholar 

  • Roush RT, McKenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32:361–380

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein DK, Heisey P, Shoemaker R et al. (2005) Crop genetic resources: An economic appraisal. United States Department of Agriculture (USDA), Economic Information Bulletin No. 2

    Google Scholar 

  • Scheel D (1998) Resistance response physiology and signal transduction. Curr Opin Plant Biol 1:305–310

    Article  CAS  PubMed  Google Scholar 

  • Schoonhoven LM, Van Loon JJA, Dicke M (2005) Insect-plant biology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Seshu DV, Kauffman HE (1980) Differential responses of rice varieties to the brown plant hoppers in the international screening tests, vol 52, IRRI Research Paper Series. International Rice Research Institute, Los Banos, Philippines, pp 1–13

    Google Scholar 

  • Shabanimofrad M, Rafii YM, Sadegh A et al (2015) Marker-assisted selection for rice brown planthopper (Nilaparvata lugens) resistance using linked SSR markers. Turk J Biol 39:1406–1478

    Article  CAS  Google Scholar 

  • Sharma HC, Agarwal RA (1983) Oviposition behaviour of spotted bollworm, Earias vitella Fab on some cotton genotypes. Insect Sci Appl 4:373–376

    Google Scholar 

  • Sharma HC, Franzmann BA (2001) Host-plant preference and oviposition responses of the sorghum midge, Stenodiplosis sorghicola (Coquillett) (Dipt., Cecidomyiidae) towards wild relatives of sorghum. J Appl Entomol 125(3):109–114

    Google Scholar 

  • Sharma HC, Sujana G, Rao DM et al (2009) Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod-Plant Interact 3:151–161

    Article  Google Scholar 

  • Sharma TR, Das A, Thakur S et al (2014) Recent understanding on structure, function and evolution of plant disease resistance genes. Proc Indian Natn Sci Acad 80(1):83–93

    Article  Google Scholar 

  • Simmonds NW (1991) Genetics of horizontal resistance to diseases of crops. Bio Rev 66:189–241

    Article  Google Scholar 

  • Simmonds NW (1979) Principles of crop improvement. Longman, London

    Google Scholar 

  • Singh BD (2002) Plant breeding: principles and methods. Kalyani Publishers, New Delhi

    Google Scholar 

  • Singh K, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5(5):430–6

    Google Scholar 

  • Singh SP, Schwartz HF (2011) Review: breeding common bean for resistance to insect pests and nematodes. Can J Plant Sci 91:239–250

    Article  Google Scholar 

  • Smith CM (2005) Plant resistance to arthropods. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Khan ZR, Pathak MD (1994) Techniques for evaluating insect resistance in crop plants. Lewis Publ. Co., p 320

    Google Scholar 

  • Snelling (1941) In: Coppel HC, Mertins JW (eds) Biological insect pest suppression. Springer, Berlin

    Google Scholar 

  • Stam JM, Kroes A, Li YH et al (2014) Plant interactions with multiple insect herbivores: from community to genes. Ann Rev Plant Biol 65:689–713

    Article  CAS  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ et al (1995) Molecular genetics of plant disease resistance. Science 268:661–667

    Article  CAS  PubMed  Google Scholar 

  • Stotz HU, Kroymann J, Mitchell-Olds T et al (1999) Plant-insect interactions. Curr Opin Plant Biol 2:268–272

    Article  CAS  PubMed  Google Scholar 

  • Stout MJ (2013) Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Sci 20:263–272

    Article  PubMed  Google Scholar 

  • Tamura Y, Hattori M, Yoshioka H et al (2014) Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Sci Rep 4:587

    Google Scholar 

  • Tan CT, Carver BF, Chen MS et al (2013) Genetic association of OPR genes with resistance to Hessian fly in hexaploid wheat. BMC Genomics 14:369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, Young ND, Patterson AH et al (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–264

    CAS  Google Scholar 

  • Tar’an B, Thomas E, Michaels TE et al (2003) Marker assisted selection for complex trait in common bean (Phaseolus vulgaris L.) using QTL-based index. Euphytica 130:423–433

    Article  Google Scholar 

  • Vander BEA, Jones JD (1998) Plant disease resistance proteins and the gene for gene concept. Trends Biochem Sci 23:454–456

    Article  Google Scholar 

  • Van der Plank JE (1963) Plant diseases: epidemics and control. Academic, New York

    Google Scholar 

  • Van der Plank JE (1968) Disease resistance in plants. Academic, New York

    Google Scholar 

  • Vander Plank JE (1978) Genetic and molecular basis of plant pathogenesis. Springer, New York

    Google Scholar 

  • Van Doorn A, de Vos M (2013) Resistance to sap-sucking insects in modern-day agriculture. Front Plant Sci 222(4):1–8

    Google Scholar 

  • Venkateswaran K (2003) Diversity analysis and identification of sources of resistance to downy mildew, shoot fly and stem borer in wild sorghums. Ph.D. Dissertation, Osmania University

    Google Scholar 

  • Vilkova NA, Kunzetsova TL, Ismailov AL et al (1988) Effect of cotton cultivars with high content of gossypol on development of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Entomol Obozr 4:689–698

    Google Scholar 

  • Waibel H (1986) The economics of integrated pest control in irrigated rice. Springer, Berlin

    Book  Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Xu SS, Harris MO et al (2006) Genetic characterization and molecular mapping of resistance genes derived from Aegilops tauschii in synthetic wheat. Theor Appl Genet 113:611–618

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ca L, Zhang Y et al (2015) Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. J Exp Bot 66:6035–6045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • War AR, Paulraj MG, War MY et al (2011) Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.) Plant Signal Behav 6:1787–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widstrom NW, Williams WP, Wiseman BR et al (1992) Recurrent selection for resistance to leaf feeding by fall armyworm on maize. Crop Sci 32:1171–11174

    Article  Google Scholar 

  • Williams WP, Davis FM, Scott GE (1978) Resistance of corn to leaf feeding damage by the fall armyworm. Crop Sci 18:861–864

    Article  Google Scholar 

  • Williams WG, Kennedy GG, Yamamoo RT et al (1980) 2-tridecanone: a naturally occurring insecticide from the wild tomato Lycopersicon hirsutum f. glabratum. Science 207:888–889

    Article  CAS  PubMed  Google Scholar 

  • Wiseman BR, Widstorm NW (1992) In: Mihm JA (ed) Insect resistant maize. International Maize and Wheat Improvement Center, Mexico

    Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Hettenhausen C, Schuman MC et al (2008) A comparison of two Nicotiana attenuata accessions reveals large differences in signaling induced by oral secretions of the specialist herbivore Manduca sexta. Plant Physiol 146:927–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurzinger B, Mair A, Pfister B (2011) Cross-talk of calcium-dependent protein kinase and MAP kinase signaling. Plant Signal Behav 6(1):8–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yencho GC, Cohen MB, Byrne PF (2000) Applications of tagging and mapping insect resistance loci in plants. Annu Rev Entomol 45:393–422

    Article  CAS  PubMed  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  CAS  PubMed  Google Scholar 

  • Yu GT, Cai XW, Harris MO et al (2009) Saturation and comparative mapping of the genomic region harboring resistance gene H26 in wheat. Theor Appl Genet 118:1589–1599

    Article  CAS  PubMed  Google Scholar 

  • Zhang F (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A 107:12028–12033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Gu C, Wang D (2009) Molecular mapping of soybean aphid resistance genes in PI 567541B. Theor Appl Genet 118:473–482

    Article  CAS  PubMed  Google Scholar 

  • Zheng SJ, Dicke M (2008) Ecological genomics of plant–insect interactions: from gene to community. Plant Physiol 146:812–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuber MS, Fairchild ML, Keaster AJ et al (1971) Evaluation of 10 generation of mass selection for corn earworm resistance. Crop Sci 11:16–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder Sandhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sandhu, S., Kang, M.S. (2017). Advances in Breeding for Resistance to Insects. In: Arora, R., Sandhu, S. (eds) Breeding Insect Resistant Crops for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-6056-4_3

Download citation

Publish with us

Policies and ethics