Skip to main content

Marine Enzymes – Production & Applications

  • Chapter
Springer Handbook of Marine Biotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

The oceans provide an almost untapped reservoir of novel enzymes which might have a potential as biocatalysts for academic research and for industrial processes. With regard to the broad variety of environmental conditions, interesting enzymes with characteristic traits can be isolated. Especially enzymes from extremophiles, which are classified as thermophilic or psychrophilic, are of particular interest for industrial processes in terms of mass transfer or energy savings. Additionally, enzymes which are adapted towards high salt concentrations may be beneficial for industrial biotechnology applications, because the catalytic reactions can be performed in non-diluted solutions. Up to now only a minor amount of this treasure has found an application in the laboratory and industry. However, regarding the ongoing progress and developments in molecular biology it seems that the portfolio of enzymes that can be applied for the production of bulk and fine chemicals will be broadened in the near future. In this chapter an exemplary overview about the research work done on the production of enzymes from marine origin, as well as their potential application in industrial processes is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACE:

angiotensin-converting enzyme

CCF:

conico-cylindrical flask

DNA:

deoxyribonucleic acid

DO:

dissolved oxygen

EDTA:

ethylenediaminetetraacetic acid

ET-743:

ecteinascidins

GHF:

glycoside hydrolase family

PCR:

polymerase chain reaction

QS:

quorum sensing

SAM:

S-adenosyl-L-methionine

cAMP:

cyclic adenosine monophosphate

References

  1. W. Bergmann, R.J. Feeney: Contributions to the study of marine products. XXXII. The nucleosides of sponges.1, J. Org. Chem. 16, 981–987 (1951)

    Article  CAS  Google Scholar 

  2. T.F. Molinski, D.S. Dalisay, S.L. Lievens, J.P. Saludes: Drug development from marine natural products, Nature Rev. Drug Discov. 8, 69–85 (2009)

    Article  CAS  Google Scholar 

  3. P. Proksch, R.A. Edrada, R. Ebel: Drugs from the seas - current status and microbiological implications, Appl. Microbiol. Biotechnol. 59, 125–134 (2002)

    Article  CAS  Google Scholar 

  4. D. Boettger, C. Hertweck: Molecular diversity sculpted by fungal PKS-NRPS hybrids, Chembiochem 14, 28–42 (2013)

    Article  CAS  Google Scholar 

  5. G. Debashish, S. Malay, S. Barindra, M. Joydeep: Marine enzymes, Adv. Biochem. Eng. Biotechnol 96, 189–218 (2005)

    CAS  Google Scholar 

  6. B. Austin: Marine microbiology (Cambridge Univ. Press, Cambridge [Cambridgeshire], New York 1988)

    Google Scholar 

  7. F. Schut, E.J. de Vries, J.C. Gottschal, B.R. Robertson, W. Harder, R.A. Prins, D.K. Button: Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions, Appl. Environ. Microbiol. 59, 2150–2160 (1993)

    CAS  Google Scholar 

  8. M. Gledhill, C.M.G. van Den Berg: Determination of complexation of iron (III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry, Marine Chem. 47, 41–54 (1994)

    Article  CAS  Google Scholar 

  9. P.D. Tortell, M.T. Maldonado, J. Granger, N.M. Price: Marine bacteria and biogeochemical cycling of iron in the oceans, FEMS Microbiol. Ecol. 29, 1–11 (1999)

    Article  CAS  Google Scholar 

  10. J.B. Neilands: Siderophores: structure and function of microbial iron transport compounds, J. Biol. Chem. 270, 26723–26726 (1995)

    Article  CAS  Google Scholar 

  11. C.E. Zobell: Studies on marine bacteria I The cultural requirements of heterotrophic aerobes, J. Mar. Res. 4, 42–75 (1941)

    Google Scholar 

  12. A.M. Stock, V.L. Robinson, P.N. Goudreau: Two-component signal transduction, Annu. Rev. Biochem. 69, 183–215 (2000)

    Article  CAS  Google Scholar 

  13. W.C. Fuqua, S.C. Winans, E.P. Greenberg: Quorum sensing in bacteria - The LuxR-LuxI family of cell density-responsive transcriptional regulators, J. Bacteriology 176, 269–275 (1994)

    CAS  Google Scholar 

  14. S. Schauder, B.L. Bassler: The languages of bacteria, Gene Dev. 15, 1468–1480 (2001)

    Article  CAS  Google Scholar 

  15. J.W. Hastings, K.H. Nealson: Bacterial bioluminescence, Annu. Rev. Microbiology 31, 549–595 (1977)

    Article  CAS  Google Scholar 

  16. K.H. Nealson, J.W. Hastings: Bacterial bioluminescence: its control and ecological significance, Microbiology Rev. 43, 496–518 (1979)

    CAS  Google Scholar 

  17. M. Kleerebezem, L.E. Quadri, O.P. Kuipers, W.M. de Vos: Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria, Mol. Microbiology 24, 895–904 (1997)

    Article  CAS  Google Scholar 

  18. B.A. Lazazzera, A.D. Grossman: The ins and outs of peptide signaling, Trends Microbiol. 6, 288–294 (1998)

    Article  CAS  Google Scholar 

  19. N.A. Whitehead, A.M. Barnard, H. Slater, N.J. Simpson, G.P. Salmond: Quorum-sensing in Gram-negative bacteria, FEMS Microbiol. Rev. 25, 365–404 (2001)

    Article  CAS  Google Scholar 

  20. L. Yan, K.G. Boyd, J. Grant Burgess: Surface attachment induced production of antimicrobial compounds by marine epiphytic bacteria using modified roller bottle cultivation, Marine Biotechnol 4, 356–366 (2002)

    Article  CAS  Google Scholar 

  21. L. Yan, K.G. Boyd, D.R. Adams, J.G. Burgess: Biofilm-specific cross-species induction of antimicrobial compounds in bacilli, Appl. Environ. Microbiol. 69, 3719–3727 (2003)

    Article  CAS  Google Scholar 

  22. S. Mitra, S. Sarkar, R. Gachhui, J. Mukherjee: A novel conico-cylindrical flask aids easy identification of critical process parameters for cultivation of marine bacteria, Appl. Microbiol. Biotechnol. 90, 321–330 (2011)

    Article  CAS  Google Scholar 

  23. S. Mitra, P. Banerjee, R. Gachhui, J. Mukherjee: Cellulase and xylanase activity in relation to biofilm formation by two intertidal filamentous fungi in a novel polymethylmethacrylate conico-cylindrical flask, Bioprocess Biosyst. Eng. 34, 1087–1101 (2011)

    Article  CAS  Google Scholar 

  24. S. Sarkar, D. Roy, J. Mukherjee: Enhanced protease production in a polymethylmethacrylate conico-cylindrical flask by two biofilm-forming bacteria, Bioresource Technol. 102, 1849–1855 (2011)

    Article  CAS  Google Scholar 

  25. S. Sarkar, M. Saha, D. Roy, P. Jaisankar, S. Das, L. Gauri Roy, R. Gachhui, T. Sen, J. Mukherjee: Enhanced production of antimicrobial compounds by three salt-tolerant actinobacterial strains isolated from the Sundarbans in a niche-mimic bioreactor, Marine Biotechnol. 10, 518–526 (2008)

    Article  CAS  Google Scholar 

  26. I. Bussmann, B. Philipp, B. Schink: Factors influencing the cultivability of lake water bacteria, J. Microbiol. Methods 47, 41–50 (2001)

    Article  CAS  Google Scholar 

  27. L.L. Guan, K. Kamino: Bacterial response to siderophore and quorum-sensing chemical signals in the seawater microbial community, BMC Microbiol. 1, 27 (2001)

    Article  CAS  Google Scholar 

  28. S. Sarkar, D. Roy, J. Mukherjee: Production of a potentially novel antimicrobial compound by a biofilm-forming marine Streptomyces sp. in a niche-mimic rotating disk bioreactor, Bioprocess Biosyst. Eng. 33, 207–217 (2010)

    Article  CAS  Google Scholar 

  29. A. Bruns, H. Cypionka, J. Overmann: Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea, Appl. Environ. Microbiol. 68, 3978–3987 (2002)

    Article  CAS  Google Scholar 

  30. E. Legin, C. Ladrat, A. Godfroy, G. Barbier, F. Duchiron: Thermostable amylolytic enzymes of thermophilic microorganisms from deep-sea hydrothermal vents, C.R. Acad. Sci. III-Vie 320, 893–898 (1997)

    Article  Google Scholar 

  31. J. Zhang, R. Zeng: Psychrotrophic amylolytic bacteria from deep sea sediment of Prydz Bay, Antarctic: Diversity and characterization of amylases, World J. Microbiol. Biotechnol 23, 1551–1557 (2007)

    Article  CAS  Google Scholar 

  32. J. Zhang, R. Zeng: Molecular cloning and expression of an extracellular $\alpha$-amylase gene from an Antarctic deep sea psychrotolerant Pseudomonas stutzeri strain 7193, World J. Microbiol. Biotechnol. 27, 841–850 (2011)

    Article  CAS  Google Scholar 

  33. J. Liu, Z. Zhang, Z. Liu, H. Zhu, H. Dang, J. Lu, Z. Cui: Production of cold-adapted amylase by marine bacterium Wangia sp, C52: Optimization, modeling, and partial characterization, Marine Biotechnol. 13, 837–844 (2011)

    CAS  Google Scholar 

  34. M. Ballschmiter, O. Fütterer, W. Liebl: Identification and characterization of a novel intracellular alkaline alpha-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8, Appl. Environ. Microbiol. 72, 2206–2211 (2006)

    Article  CAS  Google Scholar 

  35. F. Puspasari, Z. Nurachman, A.S. Noer, O.K. Radjasa, M.J.E.C. van der Maarel, D. Natalia: Characteristics of raw starch degrading $\alpha$-amylase from Bacillus aquimaris MKSC $\mathrm{6.2}$ associated with soft coral Sinularia sp, Starch - Stärke 63, 461–467 (2011)

    Article  CAS  Google Scholar 

  36. K. Vidilaseris, K. Hidayat, D. Retnoningrum, Z. Nurachman, A. Noer, D. Natalia: Biochemical characterization of a raw starch degrading $\alpha$-amylase from the Indonesian marine bacterium Bacillus sp, ALSHL3, Biologia 64, 1047–1052 (2009)

    CAS  Google Scholar 

  37. S. Chakraborty, A. Khopade, C. Kokare, K. Mahadik, B. Chopade: Isolation and characterization of novel alpha-amylase from marine Streptomyces sp D1, J. Mol. Catal. B: Enzymatic 58, 17–23 (2009)

    Article  CAS  Google Scholar 

  38. S. Chakraborty, A. Khopade, R. Biao, W. Jian, X.Y. Liu, K. Mahadik, B. Chopade, L.X. Zhang, C. Kokare: Characterization and stability studies on surfactant, detergent and oxidant stable alpha-amylase from marine haloalkaliphilic Saccharopolyspora sp. A9, J. Mol. Catal. B: Enzymatic 68, 52–58 (2011)

    Article  CAS  Google Scholar 

  39. L.E. Taylor, B. Henrissat, P.M. Coutinho, N.A. Ekborg, S.W. Hutcheson, R.M. Weiner: Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T, J. Bacteriology 188, 3849–3861 (2006)

    Article  CAS  Google Scholar 

  40. N. Trivedi, V. Gupta, M. Kumar, P. Kumari, C.R.K. Reddy, B. Jha: Solvent tolerant marine bacterium Bacillus aquimaris secreting organic solvent stable alkaline cellulase, Chemosphere 83, 706–712 (2011)

    Article  CAS  Google Scholar 

  41. H.J. Kim, Y.J. Lee, W. Gao, C.H. Chung, C.W. Son, J.W. Lee: Statistical optimization of fermentation conditions and comparison of their influences on production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using orthogonal array method, Biotechnol. Bioprocess Eng. 16, 542–548 (2011)

    Article  CAS  Google Scholar 

  42. N.A. El-Sersy, H. Abd-Elnaby, G.M. Abou-Elela, H.A.H. Ibrahim, N.M.K. El-Toukhy: Optimization, economization and characterization of cellulase produced by marine Streptomyces ruber, Afr. J. Biotechnol. 9, 6355–6364 (2010)

    CAS  Google Scholar 

  43. C. Ravindran, T. Naveenan, G.R. Varatharajan: Optimization of alkaline cellulase production by the marine-derived fungus Chaetomium sp. using agricultural and industrial wastes as substrates, Botanica Mar. 53, 275–282 (2010)

    Article  CAS  Google Scholar 

  44. S.B. Pointing, L.L.P. Vrijmoed, E.B.G. Jones: A qualitative assessment of lignocellulose degrading enzyme activity in marine fungi, Botanica Mar. 41, 293–298 (1998)

    Article  CAS  Google Scholar 

  45. W. Luo, L.L.P. Vrijmoed, E.B.G. Jones: Screening of marine fungi for lignocellulose-degrading enzyme activities, Botanica Mar. 48, 379–386 (2005)

    Article  CAS  Google Scholar 

  46. R. Aunpad, W. Panbangred: Cloning and characterization of the constitutively expressed chitinase C gene from a marine bacterium, Salinivibrio costicola strain 5SM-1, J. Biosci. Bioengineering 96, 529–536 (2003)

    Article  CAS  Google Scholar 

  47. H. Tsujibo, H. Orikoshi, K. Shiotani, M. Hayashi, J. Umeda, K. Miyamoto, C. Imada, Y. Okami, Y. Inamori: Characterization of chitinase C from a marine bacterium, Alteromonas sp. strain O-7, and its corresponding gene and domain structure, Appl. Environ. Microbiol. 64, 472–478 (1998)

    CAS  Google Scholar 

  48. H. Orikoshi, N. Baba, S. Nakayama, H. Kashu, K. Miyamoto, M. Yasuda, Y. Inamori, H. Tsujibo: Molecular analysis of the gene encoding a novel cold-adapted chitinase (ChiB) from a marine bacterium, Alteromonas sp. strain O-7, J. Bacteriology 185, 1153–1160 (2003)

    Article  CAS  Google Scholar 

  49. V. Gohel, T. Chaudhary, P. Vyas, H.S. Chhatpar: Statistical screenings of medium components for the production of chitinase by the marine isolate Pantoea dispersa, Biochem. Eng. J. 28, 50–56 (2006)

    Article  CAS  Google Scholar 

  50. P.V. Suresh, M. Chandrasekaran: Impact of process parameters on chitinase production by an alkalophilic marine Beauveria bassiana in solid state fermentation, Process Biochem. 34, 257–267 (1999)

    Article  CAS  Google Scholar 

  51. P.V. Suresh, M. Chandrasekaran: Utilization of prawn waste for chitinase production by the marine fungus Beauveria bassiana by solid state fermentation, World J. Microbiol. Biotechnol. 14, 655–660 (1998)

    Article  CAS  Google Scholar 

  52. Y. Han, B. Yang, F. Zhang, X. Miao, Z. Li: Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China Sea sponge Craniella australiensis, Marine Biotechnol. 11, 132–140 (2009)

    Article  CAS  Google Scholar 

  53. C. Ma, X. Lu, C. Shi, J. Li, Y. Gu, Y. Ma, Y. Chu, F. Han, Q. Gong, W. Yu: Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24, J. Biol. Chem. 282, 3747–3754 (2007)

    Article  CAS  Google Scholar 

  54. X. Lu, Y. Chu, Q. Wu, Y. Gu, F. Han, W. Yu: Cloning, expression and characterization of a new agarase-encoding gene from marine Pseudoalteromonas sp, Biotechnology Lett. 31, 1565–1570 (2009)

    Article  CAS  Google Scholar 

  55. C. Oh, C. Nikapitiya, Y. Lee, I. Whang, S.-J. Kim, D.-H. Kang, J. Lee: Cloning, purification and biochemical characterization of beta agarase from the marine bacterium Pseudoalteromonas sp AG4, J. Indian Microbiol. Biotechnol. 37, 483–494 (2010)

    Article  CAS  Google Scholar 

  56. B. Lin, G. Lu, Y. Zheng, W. Xie, S. Li, Z. Hu: Gene cloning, expression and characterization of a neoagarotetraose-producing beta-agarase from the marine bacterium Agarivorans sp. HZ105, World J. Microbiol. Biotechnol. 28, 1691–1697 (2012)

    Article  CAS  Google Scholar 

  57. M. Long, Z. Yu, X. Xu: A novel beta-agarase with high pH stability from marine Agarivorans sp LQ48, Marine Biotechnol. 12, 62–69 (2010)

    Article  CAS  Google Scholar 

  58. C. Zhang, S.-K. Kim: Research and application of marine microbial enzymes: status and prospects, Mar. Drugs 8, 1920–1934 (2010)

    Article  CAS  Google Scholar 

  59. S. Chellappan, C. Jasmin, S.M. Basheer, K.K. Elyas, S.G. Bhat, M. Chandrasekaran: Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS10 under solid state fermentation, Process Biochem. 41, 956–961 (2006)

    Article  CAS  Google Scholar 

  60. S. Chellappan, C. Jasmin, S.M. Basheer, A. Kishore, K.K. Elyas, S.G. Bhat, M. Chandrasekaran: Characterization of an extracellular alkaline serine protease from marine Engyodontium album BTMFS10, J. Indian Microbiol. Biotechnol. 38, 743–752 (2011)

    Article  CAS  Google Scholar 

  61. B. Sana, D. Ghosh, M. Saha, J. Mukherjee: Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma-Proteobacterium isolated from the marine environment of the Sundarbans, Process Biochem. 41, 208–215 (2006)

    Article  CAS  Google Scholar 

  62. C. Jasmin, S. Chellappan, R.K. Sukumaran, K.K. Elyas, S.G. Bhat, M. Chandrasekaran: Molecular cloning and homology modelling of a subtilisin-like serine protease from the marine fungus, Engyodontium album BTMFS10, World J. Microbiol. Biotechnol. 26, 1269–1279 (2010)

    Article  CAS  Google Scholar 

  63. X. Ni, Z. Chi, C. Ma, C. Madzak: Cloning, characterization, and expression of the gene encoding alkaline protease in the marine yeast Aureobasidium pullulans 10, Marine Biotechnol. 10, 319–327 (2008)

    Article  CAS  Google Scholar 

  64. C.G. Kumar, H.S. Joo, Y.M. Koo, S.R. Paik, C.S. Chang: Thermostable alkaline protease from a novel marine haloalkalophilic Bacillus clausii isolate, World J. Microbiol. Biotechnol. 20, 351–357 (2004)

    Article  CAS  Google Scholar 

  65. M. Elibol, A.R. Moreira: Production of extracellular alkaline protease by immobilization of the marine bacterium Teredinobacter turnirae, Process Biochem. 38, 1445–1450 (2003)

    Article  CAS  Google Scholar 

  66. M. Elibol, A.R. Moreira: Optimizing some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solid substrate fermentation, Process Biochem. 40, 1951–1956 (2005)

    Article  CAS  Google Scholar 

  67. U. Beshay, A. Moreira: Protease production from marine microorganism by immobilized cells, AIChE Annual Meeting, Conf. Proc. (2004) pp. 8717–8729

    Google Scholar 

  68. G.W. Gribble: Amazing organohalogens, Am. Scientist 92, 342–349 (2004)

    Article  Google Scholar 

  69. A. Butler, J.V. Walker: Marine Haloperoxidases, Chem. Reviews 93, 1937–1944 (1993)

    Article  CAS  Google Scholar 

  70. J.N. Carter-Franklin, A. Butler: Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products, J. Am. Chem. Soc. 126, 15060–15066 (2004)

    Article  CAS  Google Scholar 

  71. L.N. Herrera-Rodriguez, F. Khan, K.T. Robins, H.P. Meyer: Perspectives on biotechnological halogenation Part I: Halogenated products and enzymatic halogenation, Chim. Oggi 29, 31–33 (2011)

    CAS  Google Scholar 

  72. K.M. Manoj, X. Yi, G.P. Rai, L.P. Hager: A kinetic epoxidation assay for chloroperoxidase, Biochem. Biophys. Res. Commun. 266, 301–303 (1999)

    Article  CAS  Google Scholar 

  73. K.M. Manoj, F.J. Lakner, L.P. Hager: Epoxidation of indene by chloroperoxidase, J. Mol. Catal. B: Enzymatic 9, 107–111 (2000)

    Article  CAS  Google Scholar 

  74. S. Colonna, N. Gaggero, L. Casella, G. Carrea, P. Pasta: Chloroperoxidase and hydrogen-peroxide - an efficient system for enzymatic enatioselective sulfoxidations, Tetrahedron-Asymmetry 3, 95–106 (1992)

    Article  CAS  Google Scholar 

  75. D.R. Doerge, M.D. Corbett: Peroxygenation mechanism for chloroperoxidase-catalyzed N-oxidation of arylamines, Chem. Res. Toxicol. 4, 556–560 (1991)

    Article  CAS  Google Scholar 

  76. V.P. Miller, R.A. Tschirret-Guth, P.R. de Ortiz Montellano: Chloroperoxidase-catalyzed benzylic hydroxylation, Arch. Biochem. Biophys. 319, 333–340 (1995)

    Article  CAS  Google Scholar 

  77. M.P.J. van Deurzen, F. vanRantwijk, R.A. Sheldon: Synthesis of substituted oxindoles by chloroperoxidase catalyzed oxidation of indoles, J. Mol. Catal. B: Enzymatic 2, 33–42 (1996)

    Article  Google Scholar 

  78. E. Kiljunen, L.T. Kanerva: Chloroperoxidase-catalysed oxidation of alcohols to aldehydes, J. Mol. Catal. B: Enzymatic 9, 163–172 (2000)

    Article  CAS  Google Scholar 

  79. V. Yazbik, M. Ansorge-Schumacher: Fast and efficient purification of chloroperoxidase from C. fumago, Process Biochem. 45, 279–283 (2010)

    Article  CAS  Google Scholar 

  80. K.H. van Pee: Biosynthesis of halogenated metabolites by bacteria, Annu. Rev. Microbiol. 50, 375–399 (1996)

    Article  Google Scholar 

  81. K.H. van Pee: Microbial biosynthesis of halometabolites, Arch. Microbiology 175, 250–258 (2001)

    Article  Google Scholar 

  82. K.H. van Pee: Halogenating enzymes for selective halogenation reactions, Curr. Org. Chem. 16, 2583–2597 (2012)

    Article  Google Scholar 

  83. K. Muffler, A.R.K. Ngnigha, R. Ulber: Determination of kinetic parameters of the FADH(2)-dependent tryptophan-5-halogenases from Streptomyces rugosporus, Chem. Ing. Tech. 82, 121–127 (2010)

    Article  CAS  Google Scholar 

  84. K. Muffler, M. Retzlaff, K.-H. van Pee, R. Ulber: Optimisation of halogenase enzyme activity by application of a genetic algorithm, J. Biotechnol. 127, 425–433 (2007)

    Article  CAS  Google Scholar 

  85. H. Deng, D. O'Hagan: The fluorinase, the chlorinase and the duf-62 enzymes, Curr. Opin. Chem. Biol. 12, 582–592 (2008)

    Article  CAS  Google Scholar 

  86. R.K. Saiki, D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, H.A. Erlich: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase, Science 239, 487–491 (1988)

    Article  CAS  Google Scholar 

  87. P. Mattila, J. Korpela, T. Tenkanen, K. Pitkanen: Fidelity of DNA synthesis by the Thermococcus litoralisDNA polymerase–an extremely heat stable enzyme with proofreading activity, Nucleic Acids Res. 19, 4967–4973 (1991)

    Article  CAS  Google Scholar 

  88. M. Synnes: Bioprospecting of organisms from the deep sea: scientific and environmental aspects, Clean Technol. Env. Policy 9, 53–59 (2007)

    Article  Google Scholar 

  89. K.S. Lundberg, D.D. Shoemaker, M.W. Adams, J.M. Short, J.A. Sorge, E.J. Mathur: High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus, Gene 108, 1–6 (1991)

    Article  CAS  Google Scholar 

  90. M. Takahashi, E. Yamaguchi, T. Uchida: Thermophilic DNA ligase. Purification and properties of the enzyme from Thermus thermophilus HB8, J. Biol. Chem. 259, 10041–10047 (1984)

    CAS  Google Scholar 

  91. J. Luo, D.E. Bergstrom, F. Barany: Improving the fidelity of Thermus thermophilus DNA ligase, Nucleic Acids Res. 24, 3071–3078 (1996)

    Article  CAS  Google Scholar 

  92. H.X. Chiura, T. Kamiyama, H. Hirano, M. Futagami, M. Watahiki, K. Kobayashi, U. Simidu, J. Takagi: Purification and characterization of AspMD1, an isoschizomer of Sau3AI, from a marine bacterium, Alcaligenes sp MD1, Nucleic Acids Res. 20, 1996 (1992)

    Article  CAS  Google Scholar 

  93. H. Mizuno, T. Suzuki, Y. Yamada, M. Akagawa, K. Yamasato: Purification and properties of restriction endonuclease from Deleya marina IAM 14114, a marine bacterium (DmaI), Agric. Biol. Chem. 54, 2863–2867 (1990)

    CAS  Google Scholar 

  94. M. Chandrasekaran, S. Rajeev Kumar: Marine microbial enzymes. In: Encyclopedia of Life Support Systems(EOLSS), Developed under the Auspices of the UNESCO, ed. by H.W. Doelle, S. Rokem, M. Berovic (Eolss Publishers, Oxford 2003)

    Google Scholar 

  95. K. Muffler, R. Ulber: Downstream processing in marine biotechnology, Adv. Biochem. Eng. Biotechnol. 97, 63–103 (2005)

    CAS  Google Scholar 

  96. J.A. Asenjo: Separation processes in biotechnology (Dekker, New York 1990)

    Google Scholar 

  97. E. Goldberg: Handbook of downstream processing, 1st edn. (Blackie Academic & Professional, London, New York 1997)

    Google Scholar 

  98. G. Stephanopoulos, P. Stadler, H.-J. Rehm, G. Reed, A. Pühler: Biotechnology: A multi-volume comprehensive treatise, 2nd edn. (VCH Verlagsgesellschaft, Weinheim 1993)

    Google Scholar 

  99. Y. Wang, M. Sun, Y. Zhang, Y. Hong, J. Hao, X. Liu, C. Wang: Studies on preparation and characteristic of the marine low temperature lysozyme, Mar. Fish Res. 21, 54–63 (2000)

    Google Scholar 

  100. Y.-L. Zou, M. Sun, Y.-J. Wang: Purification and characterization of a lysozyme from a marine microorganism, Chin. J. Biotechnol. 21, 420–424 (2005)

    CAS  Google Scholar 

  101. V. Ganeva, B. Galutzov, J. Teissié: High yield electroextraction of proteins from yeast by a flow process, Anal. Biochemistry 315, 77–84 (2003)

    Article  CAS  Google Scholar 

  102. R. Ulber, K. Plate, O.W. Reif, D. Melzner: Membranes for protein isolation and purification. In: Isolation and purification of proteins, ed. by R. Hatti-Kaul, B. Mattiasson (Marcel Dekker, New York 2003) pp. 191–224

    Google Scholar 

  103. K. Muffler, R. Ulber: Fed-batch cultivation of the marine bacterium Sulfitobacter pontiacususing immobilized substrate and purification of sulfite oxidase by application of membrane adsorber technology, Biotechnology Bioeng. 99, 870–875 (2008)

    Article  CAS  Google Scholar 

  104. J.-H. Kang, J.-H. Woo, S.G. Kang, Y.-O. Hwang, S.-J. Kim: A cold-adapted epoxide hydrolase from a strict marine bacterium, Sphingophyxis alaskensis, J. Microbiol. Biotechnol. 18, 1445–1452 (2008)

    CAS  Google Scholar 

  105. O. Berteau, I. McCort, N. Goasdoue, B. Tissot, R. Daniel: Characterization of a new alpha-L-fucosidase isolated from the marine mollusk Pecten maximus that catalyzes the hydrolysis of alpha-L-fucose form algal fucoidan (ascophyllum nodosum), Glycobiology 12, 273–282 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Muffler or Roland Ulber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Muffler, K., Sana, B., Mukherjee, J., Ulber, R. (2015). Marine Enzymes – Production & Applications. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_14

Download citation

Publish with us

Policies and ethics