Skip to main content
Log in

Statistical optimization of fermentation conditions and comparison of their influences on production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using orthogonal array method

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The optimal conditions for the production of cellulases by a marine bacterium, Psychrobacter aquimaris LBH-10, were established and their effects were compared using orthogonal array experiments based on the Taguchi method. The optimal conditions of rice bran, peptone and initial pH for the production of avicelase and CMCase by P. aquimaris LBH-10 were 50.0, 3.0, and 8.0 g/L, respectively, whereas those for filter paperase (FPase) were 100.0, 3.0, and 8.0 g/L, respectively. Rice bran was found to be the most important factor for the production of cellulases based on the calculated percentage of participation P (%) from an analysis of the variance (ANOVA). The optimal temperature for the cell growth of P. aquimaris LBH-10 was 25°C, whereas that for the production of avicelase, CMCase and FPase was 30°C. The optimal agitation speed and aeration rate for cell growth was 400 rpm and 1.5 vvm, respectively, whereas those for the production of CMCase were 300 rpm and 1.0 vvm, respectively. Aeration was found to be more important for cell growth and CMCase production than agitation. The maximum production of avicelase, CMCase and FPase in a 100 L bioreactor for 72 h under optimized conditions was 83.2, 388.7, and 75.4 U/mL, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baek, S. C. and Y. J. Kwon (2007) Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnol. Bioproc. Eng. 12: 404–409.

    Article  CAS  Google Scholar 

  2. Blumer-Schuette, S. E., I. Kataeva, J. Westpheling, M. W. W. Adams, and R. M. Kelly (2008) Extremely thermophilic microorganisms for biomass conversion: Status and prospects. Curr. Opin. Biotechnol. 19: 210–217.

    Article  CAS  Google Scholar 

  3. Yi, J. C., J. C. Sandra, A. B. John, and T. C. Shu (1999) Production and distribution of endoglucanase, cellobiohydrolase, and β-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl. Environ. Microbiol. 65: 553–559.

    Google Scholar 

  4. Ballesteros, M., J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros (2004) Ethanol from lignocelulosic materials by a simultaneous saccharification and fermentation process (SSF) with Kluyveromeces marxianus CECT 10875. Proc. Biochem. 39: 1843–1848.

    Article  CAS  Google Scholar 

  5. Niranjane, A. P., P. Madhou, and T. W. Stevenson (2007) The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantea. Enz. Microb. Technol. 40: 1464–1468.

    Article  CAS  Google Scholar 

  6. Hanif, A., A. Yasmeen, and M. I. Rajoka (2004) Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger. Bioresour. Technol. 94: 311–319.

    Article  CAS  Google Scholar 

  7. Azin, M., M. Moravej, and D. Zareh (2007) Production of xylanase by Trichoderma longibachiatum on a mixture of wheat bran and wheat straw: Optimization of culture condition by Taguchi method. Enz. Microb. Technol. 40: 801–805.

    Article  CAS  Google Scholar 

  8. Rasmussnen, R. S. and M. T. Morrissey (2007) Marine biotechnology for production of food ingredients. Adv. Food Nutr. Res. 52: 237–292.

    Article  Google Scholar 

  9. Kulakova, L., A. Galkin, T. Nakayama, T. Nishino, and N. Esaki (2004) Cold-active esterase from Psychrobacter sp. Ant300: Gene cloning, characterization, and the effects of GlyPro substitution near the active site on its catalytic activity and stability. Biochem. Biophy. Acta 1696: 59–65.

    CAS  Google Scholar 

  10. Kim, H. J., Y. J. Lee, C. H. Chung, and J. W. Lee (2010) Characterization of acidic carboxymethylcellulase produced by a marine microorganism, Psychrobacter aquimaris LBH-10. J. Life Sci. 20: 487–495.

    Article  Google Scholar 

  11. Mawadza, C., R. Hatti-Kaul, R. Zvauya, and B. Mattiasson (2000) Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83: 177–187.

    Article  CAS  Google Scholar 

  12. Cavaco-Paulo, A. (1998) Mechanism of cellulase action in textile processes. Carbohydr. Polym. 37: 273–277.

    Article  CAS  Google Scholar 

  13. Jiang, L. (2010) Optimization of fermentation conditions for pullulan production by Aureobasodium pullulans using response surface methodology. Carbohydr. Polym. 79: 414–417.

    Article  CAS  Google Scholar 

  14. Shokri, D. and G. Emitiazi (2010) Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Curr. Microbiol. 61: 217–225.

    Article  CAS  Google Scholar 

  15. Jo, K. I., Y. J. Lee, B. K. Kim, B. H. Lee, C. H. Jung, S. W. Nam, S. K. Kim, and J. W. Lee (2008) Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioproc. Eng. 13: 182–188.

    Article  CAS  Google Scholar 

  16. Lee, B. H., B. K. Kim, Y. J. Lee, C. H. Chung, and J. W. Lee (2010) Industrial scale of optimization for production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enz. Microb. Technol. 46: 38–42.

    Article  CAS  Google Scholar 

  17. Kim, B. K., B. H. Lee, Y. J. Lee, I. H. Jin, C. H. Chung, and J. W. Lee (2009) Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enz. Microb. Technol. 44: 411–416.

    Article  CAS  Google Scholar 

  18. Lee, S. M. and Y. M. Koo (2001) Pilot-scale production of cellulase using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbiol. Biotechnol. 11: 229–233.

    CAS  Google Scholar 

  19. Kang, S. W., Y. S. Park, J. S. Lee, S. I. Hong, and S. W. Kim (2004) Production of cellulase and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol. 91: 153–156.

    Article  CAS  Google Scholar 

  20. Sheetharamaiah, G. S. and N. Chabdrasekhara (1998) Hypocholesterolemic activity of oryzanol in rats. Nutr. Rep. Int. 38: 927–935.

    Google Scholar 

  21. Rajoka, M. I. and K. A. Malik (1997) Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates. Bioresour. Technol. 59: 21–27.

    Article  CAS  Google Scholar 

  22. Alam, M. Z., S. Muyibi, and R. Wahid (2008) Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge. Bioresour. Technol. 99: 4709–4716.

    Article  CAS  Google Scholar 

  23. Yu, X. B., J. H. Nam, H. S. Yun, and Y. M. Koo (1998) Optimization of cellulose production in batch fermentation by Trichoderma reesei. Biotechnol. Bioproc. Eng. 3: 44–47.

    Article  Google Scholar 

  24. Emtiazi, G. and I. Nahvi (2000) Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass Bioenergy 19: 31–37.

    Article  Google Scholar 

  25. Krishna, C. (1999) Production of bacterial cellulases by a solid state bioprocessing of banana wastes. Bioresour. Technol. 69: 231–239.

    Article  CAS  Google Scholar 

  26. Tao, S., L. Beihui, L. Zuohu, and L. Deming (1999) Effects of air pressure amplitude on cellulase productivity by Trichoderma viride SL-1 in periodic pressure solid state fermenter. Proc. Biochem. 34: 25–29.

    Article  CAS  Google Scholar 

  27. Kalogeris, E., P. Christakopoulos, P. Katapodis, A. Alexious, S. Vlachou, D. Kekos, and B. J. Macris (2003) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural waste. Proc. Biochem. 38: 1099–1104.

    Article  CAS  Google Scholar 

  28. Sukumaran, R. K., R. R. Singhania, G. M. Mathew, and A. Pandey (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34: 421–424.

    Article  CAS  Google Scholar 

  29. Domingues, F. C., J. A. Queiroz, J. M. S. Cabral, and L. P. Fonseca (2000) The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enz. Microb. Technol. 26: 394–401.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ., Lee, YJ., Gao, W. et al. Statistical optimization of fermentation conditions and comparison of their influences on production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using orthogonal array method. Biotechnol Bioproc E 16, 542–548 (2011). https://doi.org/10.1007/s12257-010-0457-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0457-5

Keywords

Navigation