Skip to main content

Cold-Adapted Yeasts in Antarctic Deserts

  • Chapter
  • First Online:
Cold-adapted Yeasts

Abstract

Antarctica is a large continent and as such has a variety of soil habitats ranging from relatively warm, moist, and high in organic carbon content, found on the Antarctic Peninsula, through the cold arid oligotrophic dry valleys. Efforts to identify yeasts from Antarctica were spurred by the development of research stations initiated during the International Geophysical Year (IGY) (1957–1958). The combination of cold, dry, oligotrophic, and high UV conditions makes the Antarctic deserts a challenging place to live. The majority of yeast species found in the Antarctic deserts are from the genera of Cryptococcus and Rhodotorula. Adaptations of yeasts to the Antarctic soil habitat include psychrophily, alteration of sterols, ability to withstand desiccation as well as the ability to successfully scavenge minerals in an oligotrophic habitat. New techniques such as high throughput sequencing and advances in mass spectrometry-based metabolomics research offer the opportunity to further explore how yeasts at the edges of life function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alchihab M, Destain J, Aguedo M, Majad L, Ghalfi H, Wathelet J-P, Thonart P (2009) Production of gamma-decalactone by a psychrophilic and a mesophilic strain of the yeast Rhodotorula aurantiaca. Appl Biochem Biotechnol 158:41–50

    Article  PubMed  CAS  Google Scholar 

  • Amato P, Christner B (2009) Macromolecular synthesis by yeasts under frozen conditions. Environ Microbiol 11:589–596

    Article  PubMed  CAS  Google Scholar 

  • Antarctica-New-Zealand (2012) McMurdo Dry Valleys ASMA manual, Christchurch

    Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea region of Antarctica. Soil Biol Biochem 38:3057–3064

    Article  CAS  Google Scholar 

  • Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315

    Article  CAS  Google Scholar 

  • Atlas RM, di Menna ME, Cameron RE (1978) Ecological investigations of yeasts in Antarctic soils. Antarct Res Ser Washington 30:27–34

    Article  Google Scholar 

  • Ayres E, Nkem JN, Wall DH, Adams BJ, Barrett JE, Simmons BL, Virginia RA, Fountain AG (2010) Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert. Polar Biol 33:897–907

    Article  Google Scholar 

  • Baker JH (1970) Quantitative study of yeast and bacteria in a Signy Island peat. Brit Antarct Surv Bull 23:51–55

    Google Scholar 

  • Barker WW, Banfield JF (1998) Zones of chemical and physical interaction at interfaces between microbial communities and minerals. Geomicrobiol J 15:223–244

    Article  CAS  Google Scholar 

  • Barrett JE, Virginia RA, Parsons AN, Wall D (2006a) Soil carbon turnover in McMurdo Dry Valleys, Antarctica. Soil Biol Biochem 38:3065–3082

    Article  CAS  Google Scholar 

  • Barrett JE, Virginia RA, Hopkins DW, Aislabie J, Bargagli R, Bockheim JG, Campbell IB, Lyons WB, Moorhead DL, Nkemh JN, Sletteni RS, Steltzerh H, Wall D, Wallenstein MD (2006b) Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biol Biochem 38:3019–3034

    Google Scholar 

  • Batra R, Boekhout T, Gueho E, Cabanes FJ, Dawson TL Jr, Gupta AK (2005) Malassezia Baillon, emerging clinical yeasts. FEMS Yeast Res 5:1101–1113

    Article  PubMed  CAS  Google Scholar 

  • Baublis JA, Wharton RA Jr, Volz PA (1991) Diversity of micro-fungi in an Antarctic dry valley. J Basic Microbiol 31:3–12

    Article  PubMed  CAS  Google Scholar 

  • Blanchette RA, Held BW, Jurgens JA, Mcnew DL, Harrington TC, Duncan SM, Farrell RL (2004) Wood-destroying soft rot fungi in historic expedition huts of Antarctica. Appl Environ Microbiol 70:1328–1335

    Article  PubMed  CAS  Google Scholar 

  • Blanchette RA, Held BW, Arenz BE, Jurgens JA, Baltes NJ, Duncan SM, Farrell RL (2010) An Antarctic hot spot for fungi at Shackleton’s historic hut on Cape Royds. Microb Ecol 60:29–38

    Article  PubMed  Google Scholar 

  • Bockheim J (1997) Properties and classification of cold desert soils from Antarctica. Soil Soc Amer J 61:224–231

    Article  CAS  Google Scholar 

  • Bockheim JG, Everett LR, Hinkel KM, Nelson FE, Brown J (1999) Soil organic carbon storage and distribution in Arctic Tundra, Barrow Alaska. Soil Soc Amer J 63:934

    Article  CAS  Google Scholar 

  • Bockheim JG (2002) Landform and soil development in the McMurdo Dry Valleys, Antarctica: a regional synthesis. Arct Antarct Alp Res 34:308–317

    Article  Google Scholar 

  • Boo SY, Wong CMVL, Rodrigues KF, Najimudin N, Murad AMA, Mahadi NM (2013) Thermal stress responses in Antarctic yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR. Polar Biol 36:381–389

    Article  Google Scholar 

  • Bridge PD, Newsham KK (2009) Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning. Fungal Ecol 2:66–74

    Article  Google Scholar 

  • Bridge PD, Spooner BM (2012) Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem? Fungal Ecol 5:381–394

    Article  Google Scholar 

  • Bruch CW (1966) Instruments for the detection of extraterrestrial life. In: Pittendrigh CS, Vishniac W, Pearman JPT (eds) Biology and exploration of Mars. National Academy of Sciences National Research Council, Washington DC, pp 487–502

    Google Scholar 

  • Burkins MB, Virginia RA, Chamberlain CP, Wall DH (2000) Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81:2377–2391

    Article  Google Scholar 

  • Burkins MB, Virginia RA, Wall DH (2001) Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Global Change Biol 7:113–125

    Article  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  PubMed  CAS  Google Scholar 

  • Cameron RE (1971) Antarctic soil microbial and ecological investigations. In: Quam LO, Porter HD (eds) Research in Antarctic. American Association for the Advancement of Science, Washington DC, pp 137–189

    Google Scholar 

  • Cameron RE (1972) Microbial and ecological investigations in Victoria Dry Valley, Southern Victoria Land, Antarctica. Antarct Res Ser Washington 20:195–260

    Article  Google Scholar 

  • Cameron RE, Morelli FA (1974) Viable microorganisms from Antarctic Ross Island and Taylor Valley Drill cores. Antarct J US 9:113–115

    Google Scholar 

  • Campbell DI, Claridge GGC, Campbell DI, Balks MR (1998) The soil environment of the McMurdo Dry Valleys, Antarctica. In: Priscu JC (ed) Ecosystems dynamics in a polar desert, vol 72. American Geophysical Union, Washington DC, pp 297–322

    Google Scholar 

  • Casanueva A, Tuffin M, Cary SC, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol 18:374–381

    Article  PubMed  CAS  Google Scholar 

  • Castro-Perez JM, Kamphorst J, DeGroot J, Lafeber F, Goshawk J, Yu K, Shockcor JP, Vreeken RJ, Hankemeier T (2010) Comprehensive LC-MS E lipidomic analysis using a shotgun approach and its application to biomarker detection and identification in osteoarthritis patients. J Proteome Res 9:2377–2389

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. PNAS 102:3459–3464

    Google Scholar 

  • Connell LB (1994) Biogeographic observations on South Georgia marine yeasts. Antarct J USA 29:143

    Google Scholar 

  • Connell LB, Redman RS, Craig SD, Rodriguez RJ (2006) Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biol Biochem 38:3083–3094

    Article  CAS  Google Scholar 

  • Connell LB, Redman RS, Craig SD, Scorzetti G, Iszard M, Rodriguez RJ (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459

    Article  PubMed  CAS  Google Scholar 

  • Connell LB, Templeton AS, Barrett A, Staudigel H (2009) Fungal diversity associated with an active deep sea volcano: Vailulu’u Seamount, Samoa. Geomicrobiol J 26:597–605

    Article  CAS  Google Scholar 

  • Connell LB, Redman RS, Rodriguez RJ, Barrett A, Iszard M, Fonesca Á (2010) Dioszegia antarctica and D. cryoxerica spp. nov., two novel psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica. Int J Syst Evol Micr 60:1466–1472

    Article  CAS  Google Scholar 

  • Connell LB, Staudigel H (2013) Fungal diversity in a dark oligotrophic volcanic ecosystem (DOVE) on Mount Erebus, Antarctica. Biol 2013 2

    Google Scholar 

  • Conovitz PA, McKnight DM, MacDonald LH, Fountain AG, House HR (1998) Hydrological processes influencing streamflow variation in Fryxell basin, Antarctica. Antarct Res Ser Washington 72:93–108

    Google Scholar 

  • Costello EK, Halloy SRP, Reed SC, Preston S, Schmidt SK (2009) Fumerole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. App Environ Microbiol 75:735–747

    Article  CAS  Google Scholar 

  • Cowan DA, Tow LA (2004) Endangered Antarctic environments. Ann Rev Microbiol 58:649–690

    Article  CAS  Google Scholar 

  • Cowan DA, Chown SL, Convey P, Tuffin M, Hughes KA, Pointing S, Vincent WF (2011) Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends Microbiol 19:540–548

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Ann Rev Physiol 54:579–599

    Article  CAS  Google Scholar 

  • Dalluge JJ, Connell LB (2013) On the potential of mass spectrometry-based metabolite profiling approaches to the study of biochemical adaptation in psychrophilic yeast. Extremophiles [In Press]

    Google Scholar 

  • D’Elia T, Veerapaneni R, Theraisnathan V, Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763

    Article  PubMed  Google Scholar 

  • Daffre S, Bulet P, Spisni A, Ehret-Sabatier L, Rodrigues EG, Travassos LR (2008) Bioactive natural peptides. Stud Nat Prod Chem 35:597–691

    Article  CAS  Google Scholar 

  • Daly MJ (2012) Death by protein damage in irradiated cells. DNA Repair 11:12–21

    Article  PubMed  CAS  Google Scholar 

  • Deegenaars ML, Watson K (1998) Heat shock response in psychrophilic and psychrotrophic yeast from Antarctica. Extremophiles 2:41–49

    Article  PubMed  CAS  Google Scholar 

  • Del Frate G, Caretta G (1990) Fungi isolated from Antarctic material. Polar Biol 11:1–7

    Article  Google Scholar 

  • di Menna ME (1960) Yeasts from Antarctica. J Gen Microbiol 23:295–300

    Article  PubMed  CAS  Google Scholar 

  • di Menna ME (1966a) Yeasts from Antarctic soils. A van Leeuwenhoek 32:29–38

    Article  Google Scholar 

  • di Menna ME (1966b) Three new yeasts from Antarctic soils: Candida nivalis, Candida gelida and Candida frigida spp.n. A van Leeuwenhoek 32:25–28

    Article  Google Scholar 

  • Doran PT, McKay CP, Clow GD, Dana GL, Fountain AG, Nylen TH, Lyons WB (2002) Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. J Geophys Res 107:ACL13.1–ACL13.12

    Google Scholar 

  • Elberling B, Gregorich EG, Hopkins DW, Sparrow AD, Novis PM, Greenfield LG (2006) Distribution and dynamics of soil organic matter in an Antarctic dry valley. Soil Biol Biochem 38:3095–3106

    Article  CAS  Google Scholar 

  • Ellis-Evans JC (1985) Fungi from maritime Antarctic freshwater environments. Brit Ant Sur Bull 68:37–45

    Google Scholar 

  • Etienne S, Dupont J (2002) Fungal weathering of basaltic rocks in a cold oceanic environment (Iceland): comparison between experimental and field observations. Earth Surf Proc 27:737–748

    Article  Google Scholar 

  • Farrell RL, Arenz BE, Duncan SM, Held BW, Jurgens JA, Blanchette RA (2011) Introduced and indigenous fungi of the Ross Island historic huts and pristine areas of Antarctica. Polar Biol 34:1669–1677

    Article  Google Scholar 

  • Fell JW, Statzell AC (1971) Sympodiomyces gen. n., a yeast-like organism from southern marine waters. A van Leeuwenhoek 37:359–367

    Article  CAS  Google Scholar 

  • Fell JW (1974) Yeasts in oceanic regions. In: Jones EBG (ed) Recent advances in amuatic microbiology. Paul Elek Ltd, London, pp 93–124

    Google Scholar 

  • Fell JW, Hunter IL (1974) Torulopsis austromarina sp. nov. A yeast isolated from the Antarctic Ocean. A van Leeuwenhoek 40:297–306

    Article  Google Scholar 

  • Fell JW, Scorzetti G, Connell LB, Craig SD (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soil with <5 % soil moisture. Soil Biol Biochem 38:3107–3119

    Article  CAS  Google Scholar 

  • Foreman CM, Wolf CF, Priscu JC (2004) Impact of episodic warming events on the physical, chemical and biological relationships of lakes in the McMurdo Dry Valleys, Antarctica. Aquat Geochem 10:239–268

    Article  CAS  Google Scholar 

  • Foreman CM, Sattler B, Mikucki JA, Porazinska DL, Priscu JC (2007) Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J Geophys Res 112:G04S32

    Google Scholar 

  • Fountain AG, Lyons WB, Burkins MB, Dana GL, Doran PT, Lewis KJ, McKnight DM, Moorhead DL, Parsons AN, Priscu JC, Wall DH, Wharton RA Jr, Virginia RA (1999) Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience 49:961–971

    Article  Google Scholar 

  • Fountain AG, Nylen TH, MacClune KL, Dana GL (2006) Glacier mass balances (1993–2001), Taylor Valley, McMurdo Dry Valleys, Antarctica. J Glaciol 52:451–462

    Article  Google Scholar 

  • Freckman DHW, Virginia RA (1998) Soil biodiversity and community structure in the McMurdo Dry Valleys, Antarctica. In: Priscu JC (ed) Ecosystems dynamics in a polar desert, vol 72. American Geophysical Union, Washington DC, pp 323–335

    Google Scholar 

  • Friedmann EI, McKay CP, Nienow J (1987) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: continuous nanoclimate data. Polar Biol 7:273–287

    Article  PubMed  CAS  Google Scholar 

  • Gomes J, Gomes I, Steiner W (2000) Thermolabile xylanase of the Antarctic yeast Cryptococcus adeliae: production and properties. Extremophiles 4:227–235

    Article  PubMed  CAS  Google Scholar 

  • Gostincar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbol Ecol 71:2–11

    Article  CAS  Google Scholar 

  • Goto S, Sugiyama J, Iizuka H (1969) A taxonomic study of Antarctic yeasts. Mycologia 61:748–774

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743–772

    Article  PubMed  CAS  Google Scholar 

  • Guffogg SP, Thomas-Hall S, Holloway P, Watson K (2004) A novel psychrotolerant member of the hymenomycetous yeasts from Antarctica: Cryptoccus watticus sp. nov. Int J Syst Evol Microbiol 54:275–277

    Article  PubMed  CAS  Google Scholar 

  • Hall BL, Denton GH, Hendy CH (2000) Evidence from Taylor Valley for a grounded ice sheet in the Ross Sea, Antarctica. Geogr Antarct 82A:275–303

    Article  Google Scholar 

  • Hao Y, S-y Chen, Blanchette RA, Liu X-Z (2010) Sistotrema brinkmannii, a psychrotolerant fungus from Antarctic soil. Mycosystema 29:864–868

    CAS  Google Scholar 

  • Held BW, Jurgens JA, Duncan SM, Farrell RL, Blanchette RA (2006) Assessment of fungal diversity and deterioration in a wooden structure at New Harbor, Antarctica. Polar Biol 29:526–531

    Article  Google Scholar 

  • Hogg ID, Cary SC, Convey P, Newsham KK, O’Donnell AG, Adams BJ, Aislabie J, Fratif F, Stevens MI, Wall DH (2006) Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol Biochem 38:3035–3040

    Article  CAS  Google Scholar 

  • Hopkins DW, Sparrow AD, Elberling B, Gregorich EG, Novis PM, Greenfield LG, Tilston EL (2006a) Carbon, nitrogen and temperature controls on microbial activity in soils from Antarctic dry valleys. Soil Biol Biochem 38:3130–3140

    Article  CAS  Google Scholar 

  • Hopkins DW, Sparrow AD, Novis P, Gregorich EG, Elberling B, Greenfield LG (2006b) Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils. Proc Royal Soc Biol Sci Ser B 273:2687–2695

    Article  CAS  Google Scholar 

  • Ilić N, Novković M, Guida F, Xhindoli D, Benincasa M, Tossi A, Juretić D (2013) Selective antimicrobial activity and mode of action of adepantins, glycine-rich peptide antibiotics based on anuran antimicrobial peptide sequences. Biochim Biophys Acta 1828:1004–1012

    Article  PubMed  CAS  Google Scholar 

  • Katayama-Hirayama K, Koike Y, Kaneko H, Kobayashi K, Hirayama K (2003) Removal of nitrogen by Antarctic yeast cells at low temperature. Polar Biosci 16:43–48

    Google Scholar 

  • Kates M, Baxter RM (1982) Lipid composition of mesophilic and psychrophilic yeasts (Candida species) as influenced by environmental temperature. Can J Biochem Phys 40:1213–1218

    Article  Google Scholar 

  • Kurtzman C, Fell JW (1997) The yeasts: a taxonomic study, 4th edn. Elsevier, New York

    Google Scholar 

  • Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 7:5963–5972

    Article  CAS  Google Scholar 

  • Lazazzera BA (2001) The intracellular function of extracellular peptides. Peptides 22:1519–1527

    Article  PubMed  CAS  Google Scholar 

  • Loffeld B, Keweloh H (1996) Cis/trans isomerization of unsaturated fatty acids as a possible control mechanism of membrane fluidity in Pseudomonas putida P8. Lipids 31:811–815

    Google Scholar 

  • Lynch RC, King AJ, Farías ME, Sowell P, Vitry C, Schmidt SK (2012) The potential for microbial life in the highest-elevation (>6000 m.a.s.l.) mineral soils of the Atacama region. J Geophys Res 117:G02028

    Article  CAS  Google Scholar 

  • Madronich S, McKenzie RL, Björn LO, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J Photochem Photobiol B 46:5–19

    Article  PubMed  CAS  Google Scholar 

  • Marchant DR, Denton GH (1996) Miocene and pliocene paleoclimate of the Dry Valley region, Antarctica, southern Victoria Land; A geomorphological approach. Mar Micropaleontol 27:253–271

    Article  Google Scholar 

  • McKnight DM, Niyogi DK, Alger AS, Bomblies A, Conovitz PA, Tate CM (1999) Dry valley streams in Antarctica: ecosystems waiting for water. BioSci 49:985–995

    Article  Google Scholar 

  • Meyer GH, Morrow MB, Wyss O (1962) Viable micro-organisms in a fifty-year-old yeast preparation in Antarctica. Nature 196:598

    Article  Google Scholar 

  • Moorhead DL, Doran PT, Fountain AG, Lyons WB, McKnight DM, Priscu JC, Virginia RA, Wall DH (1999) Ecological legacies: Impacts on the ecosystems of the McMurdo Dry Valleys. BioSci 49:1009–1019

    Article  Google Scholar 

  • Moorhead DL, Barrett JE, Virginia RA, Wall DH, Porazinska DL (2003) Organic matter and soil biota of upland wetlands in Taylor Valley, Antarctica. Polar Biol 26:567–576

    Article  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 276:26723–26726

    Google Scholar 

  • Nes WR, McKean ML (1977) Biochemistry of steroids and other isopentenoids. Baltimore, MD, University Park Press

    Google Scholar 

  • Nylen TH, Fountain AG, Doran PT (2004) Climatology of katabatic winds in the McMurdo Dry Valleys, southern Victoria Land, Antarctica. J Geophys Res 109:D03114

    Article  Google Scholar 

  • Onofri S, Fenice M, Cicalini AR, Tosi S, Magrino A, Pagano S, Selbmann L, Laure Z, Vishniac HS, Ocampo-Friedmann R, Friedmann EI (2000) Ecology and biology of microfungi from Antarctic rocks and soils. Ital J Zool 67:163–167

    Article  Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237

    Article  Google Scholar 

  • Onofri S, Zucconi L, Tosi S (2007) Continental Antarctic fungi. IHW-Verlag, München

    Google Scholar 

  • Otvos L Jr (2000) Antibacterial peptides isolated from insects. J Pep Sci 6:497–511

    Article  CAS  Google Scholar 

  • Pavlova K, Grigorova D, Hristozova T, Angelov A (2001) Yeast strains from Livingston Island, Antarctica. Folia Microbiol 46:397–401

    Article  CAS  Google Scholar 

  • Pavlova K, Angelova G, Savova I, Grigorova D, Kupenov L (2002) Studies of Antarctic yeast for β-glucosidase production. World J Microbiol Biotech 18:569–573

    Article  CAS  Google Scholar 

  • Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernández FJ (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Meth 70:127–131

    Article  CAS  Google Scholar 

  • Pointing SB, Chan Y, Lacap DC, Lau MC, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106:19964–19969

    PubMed  CAS  Google Scholar 

  • Ratnakumar S, Tunnacliffe A (2006) Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast. FEMS Yeast Res 6:902–913

    Article  PubMed  CAS  Google Scholar 

  • Ray MK, Shivajil S, Shyamala Rao N, Bhargaval PM (1989) Yeast strains from the Schirmacher Oasis, Antarctica. Polar Biol 9:305–309

    Article  Google Scholar 

  • Ray MK, Devi KU, Kumar GS, Shivaji S (1992) Extracellular protease from the Antarctic yeast Candida humicola. Appl Environ Microbiol 58:1918–1923

    PubMed  CAS  Google Scholar 

  • Raymond KN, Carrano CJ (1979) Coordination chemistry and microbial iron transport. Accounts Chem Res 12:183–190

    Article  CAS  Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142

    Article  CAS  Google Scholar 

  • Resnick RJ, Tomáska L (1994) Stimulation of yeast adenylyl cyclase activity by lysophospholipids and fatty acids: implications for the regulation of Ras/effector function by lipids. J Biol Chem 269:32336–32341

    PubMed  CAS  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Rogers S, Shtarkman Y, Koçer Z, Edgar R, Veerapaneni R, D’Elia T (2013) Ecology of subglacial Lake Vostok (Antarctica), based on metagenomic/metatranscriptomic analyses of accretion ice. Biol 2:629–650

    Article  Google Scholar 

  • Rozgonyi F, Szabo D, Kocsis B, Ostorházi E, Abbadessa G, Cassone M, Wade JD, Otvos L Jr (2009) The antibacterial effect of a proline-rich antibacterial peptide A3-APO. Cur Med Chem 16:3996–4002

    Article  CAS  Google Scholar 

  • Rudolph ED, Benninghoff WS (1977) Competitive and adaptive responses if invading versus indigenous biotas in Antarctica. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution and Gulf Publishing Company, Houston, pp 1211–1225

    Google Scholar 

  • Sabri A, Bare G, Jacques P, Jabrane A, Ongena M, Heugen JC, Devreese B, Thonart P (2001) Influence of moderate temperatures on myristoyl-CoA metabolism and Acyl-CoA thioesterase activity in the psychrophilic Antarctic yeast Rhodotorula aurantiaca. J Biol Chem 276:12691–12696

    Article  PubMed  CAS  Google Scholar 

  • Schwerdtfeger W (1984) Weather and climate in Antarctica. Developments in atmospheric sciences, vol 15. Elsevier, Amsterdam

    Google Scholar 

  • Scorzetti G, Petrescu I, Yarrow D, W FJ (2000) Cryptococcus adeliensis sp. nov., a xylanase producing basidiomycetous yeast from Antarctica. A van Leeuwenhoek 77:153–157

    Article  CAS  Google Scholar 

  • Selbman L, de Hogg GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  • Selbmann L, Isola D, Zucconi L, Onofri S (2011) Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays. Fungal Biol 115:937–944

    Article  PubMed  CAS  Google Scholar 

  • Silver SA, Yall I, Sinclair NA (1977) Molecular basis for the maximum growth temperature of an obligatly psychrophilic yeast, Leucosporidium stokesii. J Bacteriol 132:676–680

    PubMed  CAS  Google Scholar 

  • Sinclair NA, Stokes JL (1965) Obligately psychrophilic yeasts from the Polar Regions. Can J Microbiol 11:259–269

    Article  PubMed  CAS  Google Scholar 

  • Slessareva JE, Dohlman HG (2006) G protein signaling in yeast: new components, new connections, new compartments. Science 314:1412–1413

    Article  PubMed  CAS  Google Scholar 

  • Smith JL, Barrett JE, Tusnády G, Rejtö L, Cary SC (2010) Resolving environmental drivers of microbial comunity structure in Antarctic soils. Antarct Sci 22:673–680

    Google Scholar 

  • Soneda M (1961) Biological results of the Japanese Antarctic research expedition 15. On some yeasts from the Antarctic region. Jap Antarct Res Exp 1956–62 Sci Rep Ser E:1–10

    Google Scholar 

  • Sterflinger K (2006) Black yeasts and meristematic fungi: ecology, diversity and identification. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 501–514

    Chapter  Google Scholar 

  • Stokes JL (1971) Influence of temperature on the growth and metabolism of yeasts. In: Rose AH, Harrison JS (eds) The yeasts, vol 2., Physiology and biochemistry of yeasts. Academic Press, London, pp 119–134

    Google Scholar 

  • Sun HJ (2013) Endolithic microbial life in extreme cold climate: snow is required, but perhaps less is more. Biol 2013(2):693–701

    Google Scholar 

  • Tamppari LK, Anderson RM, Archer PD, Douglas S, Kounaves SP, Mckay CP, Ming DW, Moore Q, Quinn JE, Smith PH, Stroble S, Zent AP (2012) Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site. Antarct Sci 24:211–228

    Article  Google Scholar 

  • Taylor G (1916) With Scott: the silver lining. Smith, Elder & Co, London

    Google Scholar 

  • Theodoridis G, Gika HG, Wilson ID (2011) Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass Spectrom Rev 30:884–906

    CAS  Google Scholar 

  • Thomas-Hall SR, Watson K (2002) Cryptococcus nyarrowii sp. nov., a basidiomycetous yeast from Antarctica. Int J Syst Evol Microbiol 52:1033–1038

    Google Scholar 

  • Thomas-Hall SR, Watson K, Scorzetti G (2002) Cryptococcus statzelliae sp. nov. and three novel strains of Cryptococcus victoriae, yeasts isolated from Antarctic soils. Int J Syst Evol Microbiol 52:2303–2308

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Hall SR (2004) Phylogenetic studies of fungi: part A. Physiological and biochemical analysis of novel yeast species from Antarctica. PhD Thesis, University of New England, Armidale, New South Wales

    Google Scholar 

  • Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59

    Article  PubMed  CAS  Google Scholar 

  • Tiao G, Lee CK, McDonald IR, Cowan DA, Cary SC (2012) Rapid microbial response to the presence of an ancient relic in the Antarctic Dry Valleys. Nature Com 3:660

    Article  CAS  Google Scholar 

  • Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • Tosi S, Onofri S, Brusoni M, Zucconi L, Vishniac HS (2005) Response of Antarctic soil fungi assemblages to experimental warming and reduction of UV radiation. Polar Biol 28:470–482

    Article  Google Scholar 

  • Tubaki K (1961) Notes on some fungi and yeasts from Antarctica. Antarct Rec (Tokyo) 11:161–162

    Google Scholar 

  • Turchetti B, Thomas-Hall SR, Connell LB, Branda E, Buzzini P, Theelen B, Müller WH, Boekhou T (2011) Psychrophilic yeasts from Antarctica and European glaciers. Description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov and Glaciozyma watsonii sp. nov. Extremophiles 15:573–586

    Article  PubMed  CAS  Google Scholar 

  • Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2001) Properties of cold-adapted subtilisine-like proteinase of endemic yeast Leucosporidium antarcticum. Med Fac Landbouww Univ Gent 66:329–332

    CAS  Google Scholar 

  • Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7:435–442

    Article  PubMed  CAS  Google Scholar 

  • Ugolini FC, Bockheim JG (2008) Antarctic soils and soil formation in a changing environment: a review. Geoderma 144:1–8

    Article  CAS  Google Scholar 

  • Vaca I, Faúndez C, Maza F, Paillavil B, Hernández V, Acosta F, Levicán G, Martínez C, Chávez R (2013) Cultivable psychrotolerant yeasts associated with Antarctic marine sponges. World J Microbiol Biotech 29:183–189

    Article  CAS  Google Scholar 

  • Vaz ABM, Rosa LH, Vieria MLA, de Garcia V, Brandão LR, Teixeira LCRS, Moliné M, Libkind D, van Broock M, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Brazilian J Microbiol 42:937–947

    Article  CAS  Google Scholar 

  • Vishniac HS (1985) Yeast biomass in Ross Desert (dry valley) soils: evaluation of quantitation methods and sample transport. Antarct J US 19:174–176

    Google Scholar 

  • Vishniac HS, Klinger JM (1986) Yeasts in the Antarctic deserts. In: Megusar F, Ganter M (eds) Perspectives in microbial ecology. Slovene Society for Microbiology, Ljubljana, pp 46–51

    Google Scholar 

  • Vishniac HS (1987) Psychrophily and the systematics of yeast-like fungi. In: De Hoog GS, Smith MT, Weijman ACM (eds) Expanding realm of yeast-like fungi, vol 30., Studies in mycology. Elsevier, Amsterdam, pp 389–402

    Google Scholar 

  • Vishniac HS (2006a) Yeast biodiversity in the Antarctic. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 419–440

    Chapter  Google Scholar 

  • Vishniac HS (2006b) A multivariate analysis of soil yeasts isolated from a latitudinal gradient. Microb Ecol 52:90–103

    Article  PubMed  Google Scholar 

  • Wall A, Balks MR, Campbell DI, Paetzold RF (2004) Soil moisture measurement in the Ross Sea region of Antarctica using hydra soil moisture probes. In: Singh B (ed) Supersoil 2004: proceedings of 3rd Australian New Zealand soils conference, University of Sydney, Australia, 5–9 December 2004. Aust and New Zeal Soc Soil Sci, Sydney

    Google Scholar 

  • Watson K, Arthur H, Shipton WA (1976) Leucosporidium yeasts: obligate psychrophiles which alter membrane-lipid and cytochrome composition with temperature. J Gen Microbiol 97:11–18

    Article  PubMed  CAS  Google Scholar 

  • Weete JD (1974) Fungal lipid biochemistry: distribution and metabolism. New York, NY, Plenum Press

    Google Scholar 

  • Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92:222–229

    Article  CAS  Google Scholar 

  • Welch AZ, Gibney PA, Botstein D, Koshland DE (2013) TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae. Mol Biol Cell 24:115–128

    Article  PubMed  CAS  Google Scholar 

  • Wuczkowski M, Passoth V, Turchetti B, Andersson A-C, Olstorpe M, Laitila A, Theelen B, van Broock MR, Buzzini P, Prillinger H, Sterflinger K, Schnurer J, Boekhout T, Libkind D (2011) Description of Holtermanniella gen. nov., including Holtermanniella takashimae sp. nov. and four new combinations, and proposal of the order Holtermanniales to accommodate tremellomycetous yeasts of the Holtermannia clade. Int J Syst Evol Microbiol 61:680–689

    Article  PubMed  CAS  Google Scholar 

  • Xin M-x, Zhou P-j (2007) Mrakia psychrophila sp. nov., a new species isolated from Antarctic soil. J Zhejiang Univ Sci B 8:260–265

    Article  PubMed  CAS  Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecolol 59:436–451

    Article  CAS  Google Scholar 

  • Yergeau E, Bokhorst S, Kang S, Zhou J, Greer CW, Aerts R, Kowalchuk GA (2012) Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. ISME J 6:692–702

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, Schoenwaslder SM, Salem HH, Jackson SP (1996) The bioactive phospholipid lysophosphatidylcholine induces cellular effects via G-protein-dependent activation of adenylyl cyclase. J Biol Chem 271:27090–27098

    Article  PubMed  CAS  Google Scholar 

  • Zeglin LH, R L Sinsabaugh RL, Barrett JE, Gooseff MN, Takacs-Vesbach CD (2009) Landscape distribution of microbial activity in the McMurdo Dry Valleys: linked biotic processes, hydrology, and geochemistry in a cold desert ecosystem. Ecosystems 12:562–573

    Google Scholar 

  • Zhang X, Hua M, Song C, Chi Z (2012) Occurance and diversity of marine yeasts in Antarctica environments. J Ocean Univ China 11:70–74

    Article  CAS  Google Scholar 

  • Zhang Z, Zhu S (2012) Comparative genomics analysis of five families of antimicrobial peptide-like genes in seven ant species. Dev Comp Immunol 38:262–274

    Article  PubMed  CAS  Google Scholar 

  • Zlatanov M, Pavlova K, Grigorova D (2001) Lipid composition of some yeast strains from Livingston Island, Antarctica. Folia Microbiol 46:402–406

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie B. Connell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Connell, L.B., Rodriguez, R.R., Redman, R.S., Dalluge, J.J. (2014). Cold-Adapted Yeasts in Antarctic Deserts. In: Buzzini, P., Margesin, R. (eds) Cold-adapted Yeasts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39681-6_4

Download citation

Publish with us

Policies and ethics