Skip to main content
Log in

Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov.

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Field campaigns in Antarctica, Greenland and the Italian glaciers aiming to explore the biodiversity of these disappearing environments identified several undescribed yeast strains unable to grow at temperature above 20°C and belonging to unknown species. Fourteen of these strains were selected and grouped based on their morphological and physiological characteristics. Sequences of the D1/D2 and ITS regions of the ribosomal RNA demonstrated that the strains belong to unknown species related to Leucosporidium antarcticum. The new genus Glaciozyma is proposed and two new species are described, namely Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov. Additionally, re-classification of Leucosporidium antarcticum as Glaciozyma antarctica is proposed. Strains of Glaciozyma form a monophyletic clade and a well separated lineage within class Microbotryomycetes (Pucciniomycotina, Basidiomycota). The description of Glaciozyma genus and the re-classification of L. antarcticum reduce the polyphyletic nature of the genus Leucosporidium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aime MC, Matheny PB, Henk DA, Frieders EM, Nilsson RH, Piepenbring M, McLaughlin DJ, Szabo LJ, Begerow D, Sampaio JP, Bauer R, Weiss M, Oberwinkler F, Hibbett D (2006) An overview of the higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia 98(6):896–905

    Article  PubMed  CAS  Google Scholar 

  • Bab’eva IP, Lisichkina GA (2000) A new species of psychrophilic basidiomycetous yeasts Leucosporidium fasciculatum sp. nov. Mikrobiologiya 69:801–804

    Google Scholar 

  • Bauer R, Oberwinkler F, Vanky K (1997) Ultrastructural markers and systematics in smut fungi and allied taxa. Can J Bot 75:1237–1314

    Article  Google Scholar 

  • Bauer R, Begerow D, Sampaio JP, Weiss M, Oberwinkler F (2006) The simple-septate basidiomycetes: a synopsis. Mycol Prog 5:41–66

    Article  Google Scholar 

  • Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C, Buzzini P (2010) Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369

    Article  PubMed  CAS  Google Scholar 

  • Connell LB, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56(3):448–459

    Article  PubMed  CAS  Google Scholar 

  • Connell LB, Redman R, Rodriguez R, Barrett A, Iszard M, Fonseca A (2010) Dioszegia antarctica sp nov. and Dioszegia cryoxerica sp. nov., psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica. Int J Syst Evol Microbiol 60(6):1466–1472

    Article  PubMed  CAS  Google Scholar 

  • de Garcia V, Brizzio S, Libkind D, Rosa CA, van Broock M (2010) Wickerhamomyces patagonicus sp. nov., an ascomycetous yeast species from Patagonia, Argentina. Int J Syst Evol Microbiol 60:1693–1696

    Article  PubMed  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  PubMed  CAS  Google Scholar 

  • Doubles JC, McLaughlin DJ (1992) Basidial development, life history, and the anamorph of Krigeria eriophori. Mycologia 84:668–678

    Article  Google Scholar 

  • Fell W, Statzell AC, Hunter IL, Phaff L (1969) Leucosporidium gen. n., the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie van Laeuwenhoek 35:433–462

    Article  CAS  Google Scholar 

  • Fell J, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with <5% soil moisture. Soil Biol Biochem 38:3107–3119

    Article  CAS  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Hanschke R, Schauer F (1996) Improved ultrastructural preservation of yeast cells for scanning electron microscopy. J Microscopy 184:81–87

    Article  CAS  Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalper JA (2001) Dictionary of the fungi. 9th edn. Wallingford, p 655

  • Krallish I, Gonta S, Savenkova L, Bergauer P, Margesin R (2006) Phenol degradation by immobilized cold-adapted yeast strains of Cryptococcus terreus and Rhodotorula creatinivora. Extremophiles 10:441–449

    Article  PubMed  CAS  Google Scholar 

  • Kreger-van Rij NJW, Veenhuis M (1971) A comparative study of the cell wall structure of basidiomycetous and related yeasts. J Gen Microbiol 68:87–95

    Google Scholar 

  • Lee JK, Park KS, Park S, Park H, Song YH, Kang SH, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60:222–228

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals-fundamental and applied aspects. Naturwissenschaften 94:77–99

    Article  PubMed  CAS  Google Scholar 

  • Marvanova L, Suberkropp K (1990) Camptobasidium hydrophilum and its anamorph, Crucella subtilis: a new heterobasidiomycete from streams. Mycologia 82:208–217

    Article  Google Scholar 

  • Müller WH, Montijn RC, Humbel BM, van Aelst AC, Boon EJ, van der Krift TP, Boekhout T (1998) Structural differences between two types of basidiomycete septal pore caps. Microbiology 144:1721–1730

    Article  PubMed  Google Scholar 

  • Nakagawa T, Yamada K, Miyaji T, Tomizuka N (2002) Cold-active pectinolytic activity of psychrophilic-basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. J Biosci Bioeng 94:175–177

    Article  PubMed  CAS  Google Scholar 

  • Oerlemans J, Anderson B, Hubbard A, Huybrechts Ph, Knap WH, Johannesson T, Schmeits M, Stroeven AP, van de Wal RSW, Wallinga J, Zuo Z (1998) Modelling the response of glaciers to climate warming. Clim Dyn 14:267–274

    Article  Google Scholar 

  • Ohgiya S, Hoshino T, Okuyama H, Tanaka S, Ishizaki K (1999) In: Margesin R, Schinner F (eds) Biotechnological application of cold-adapted microorganisms. Springer, Berlin, pp 17–34

  • Okuyama H, Morita N, Yumoto I (1999) In: Margesin R, Schinner F (eds) Biotechnological application of cold-adapted microorganisms Springer, Germany, pp 101–115

  • Pazgier M, Turkiewicz M, Kalinowska H, Bielecki S (2003) The unique cold-adapted extracellular subtilase from psychrophilic yeast Leucosporidium antarcticum. J Mol Catal B 21:39–42

    Article  CAS  Google Scholar 

  • Raspor P, Zupan J (2006) Yeasts in extreme environment. In: Peter G, Rosa C (eds) The yeast handbook biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 371–417

    Chapter  Google Scholar 

  • Sampaio JP (2011) Leucosporidium Fell, Statzell, Hunter & Phaff (1969). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1485–1494

    Chapter  Google Scholar 

  • Sampaio JP, Gadanho M, Bauer R, Weiss M (2003) Taxonomic studies in the Microbotryomycetidae: Leucosporidium golubevii sp. nov., Leucosporidiella gen. nov. and the new orders Leucosporidiales and Sporidiobolales. Mycol Prog 2:53–68

    Article  Google Scholar 

  • Sampaio JP, Golubev WI, Fell JW, Gadanho M, Golubev NW (2004) Curvibasidium cygneicollum gen. nov., sp. nov. and Curvibasidium pallidicorallinum sp. nov., novel taxa in the Microbotryomycetidae (Urediniomycetes), and their relationship with Rhodotorula fujisanensis and Rhodotorula nothofagi. Int J Syst Evol Microbiol 54:1401–1407

    Article  PubMed  CAS  Google Scholar 

  • Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA region. FEMS Yeast Res 2:495–517

    PubMed  CAS  Google Scholar 

  • Shivaji S, Prasad GS (2009) Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer Science, Berlin, pp 3–18

    Chapter  Google Scholar 

  • Statzell-Tallman A, Fell JW (1998) Leucosporidium Fell, Statzell, Hunter & Phaff. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 670–675

  • Swann EC, Frieders EM, McLaughlin DJ (1999) Microbotryum, Kriegeria and the changing paradigm in basidiomycete classification. Mycologia 91:51–66

    Article  Google Scholar 

  • Swann EC, Frieders EM, McLaughlin DJ (2001) Urediniomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) Systematics and evolution. The mycota VII Part B. Springer, Berlin, pp 37–56

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thomas Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and Italian Alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Hall SR (2004) Physiological and biochemical characterisation of antarctic yeast. Ph.D. thesis. School of Biological, Biomedical and Molecular Sciences, The University of New England, Australia

  • Thomas-Hall S, Watson K (2002) Cryptococcus nyarrowii sp. nov., a basidiomycetous yeast from Antarctica. Int J Syst Evol Microbiol 52:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  PubMed  CAS  Google Scholar 

  • Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7:435–442

    Article  PubMed  CAS  Google Scholar 

  • Vishniac HS (2006) Yeast biodiversity in the Antarctic. In: Peter G, Rosa C (eds) The yeast handbook biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 419–440

    Chapter  Google Scholar 

  • Vishniac HS, Takashima M (2010) Rhodotorula arctica sp. nov., a basidiomycetous yeast from Arctic soil. Int J Syst Evol Microbiol 60:1215–1218

    Article  PubMed  CAS  Google Scholar 

  • Weiss M, Bauer R, Begerow D (2004) Spotlights on heterobasidiomycetes. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycote mycology. IHW, Eching, pp 7–78

    Google Scholar 

  • Yarrow D (1998) Methods for the isolation and identification of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 77–100

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the SYNTHESYS Project (http://www.synthesys.info/) which is financed by the European Community Research Infrastructure Action under the FP6 “Structuring the European Research Area” Programme, by FEMS (Federation of European Microbiological Societies) and by MIUR (PRIN projects 2009). We thank Raytheon Polar Support Service, UNAVCO, and PHI for logistical and laboratory support while in Antarctica. Partial funding was provided for this project by the US NSF Office of Polar Programs to L. B. Connell (OPP-0125611). The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the US Department of Interior or the US Geological Survey of any product or service to the exclusion of others that may be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta Turchetti.

Additional information

Communicated by A. Oren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2011_388_MOESM1_ESM.tif

Fig. S1 Phylogeny of the Glaciozyma clade including the representative strains of the related species K. eriophori and C. hydrophilum. Maximum parsimony tree of D1/D2 region of LSU rRNA sequences. The topology was rooted with Rh. minuta. Bootstrap percentages from 100 replications shown on the branches (value below 50% are not shown). GenBank accession numbers of the sequences are indicated after strain numbers. (TIFF 574 kb)

792_2011_388_MOESM2_ESM.tif

Fig. S2 Phylogeny of the Glaciozyma clade including the representative strains of the related species K. eriophori. Maximum parsimony tree of ITS regions including 5.8 gene of the rDNA sequences. The topology was rooted with Rh. minuta. Bootstrap percentages from 100 replications shown on the branches (value below 50% are not shown). GenBank accession numbers of the sequences are indicated after strain numbers. (TIFF 568 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turchetti, B., Thomas Hall, S.R., Connell, L.B. et al. Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov.. Extremophiles 15, 573 (2011). https://doi.org/10.1007/s00792-011-0388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00792-011-0388-x

Keywords

Navigation