Skip to main content

Advertisement

Log in

Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

This paper reports the effects of nutrient availability, UV radiation and temperature on the taxa composition and abundance of Antarctic soil mycobiota. Two sites at Edmonson Point were studied: the first was poor in nutrients, near the glacier, and the second was close to bird nesting sites. The highest abundance of soil fungi was recorded at the site adjacent to the bird nesting sites. Phoma herbarum was the most abundant taxon. Lecytophora lignicola and Ascotricha erinacea are new records for continental Antarctica. The fungal assemblage from the nutrient-deficient site was characterized by a dominance-diversity curve approaching the broken-stick model, the assemblage from the soil influenced by birds was characterized by a lognormal distribution. Plastic cloches were used in experiments designed to assess differences in fungal assemblages subjected to altered temperature and/or UV exposure. Dominance-diversity curves and diversity values of soil fungal mycobiota were compared in their natural condition as compared with manipulated conditions. Under the walled cloches, at both sites, artificial warming led to stress on Antarctic soil fungal assemblages. In contrast, UV protection led to a higher equilibrium in the assemblage structure. On the basis of the results obtained, it could be proposed that UV radiation is the most important limiting ecological factor for soil mycobiota in continental Antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arcangeli C, Zucconi L, Onofri S, Cannistraro S (1997) Fluorescence study on whole Antarctic fungal spores under enhanced UV irradiation. J Photochem Photobiol B 39:258–264

    Article  CAS  Google Scholar 

  • Azmi OR, Seppelt RD (1998) The broad-scale distribution of microfungi in the Windmill Islands region, continental Antarctica. Polar Biol 19:92–100

    Article  Google Scholar 

  • Bargagli R, Wynn-Williams D, Bersan F, Cavacini P, Ertz S, Frati F, Freckman D, Lewis Smith R, Russell N, Smith A (1997) Field Report. Biotex 1: First BIOTAS Expedition (Edmonson Point—Baia Terra Nova, 10 December 1995 to 6 February 1996). In: Tamburrini M, D’Avino R (eds) Newsletter of the Italian Biological Research in Antarctica, austral summer 1995–1996. Università degli Studi di Camerino, Italy, pp 42–58

    Google Scholar 

  • Bergero R, Girlanda M, Varese GC, Intini D, Luppi AM (1999) Psychrooligotrophic fungi from Arctic soils of Franz Joseph Land. Polar Biol 21:361–368

    Article  Google Scholar 

  • Booth C (1971) Methods in microbiology. Academic, London

    Google Scholar 

  • Caretta G, Del Frate G, Margiarotti AM (1994) A record of Arthrobotrys tortor Jarowaja and Engyodontium album (Limber) de Hoog from Antarctica. Bol Micol 9:9–13

    Google Scholar 

  • Caretta G, Del Frate G, Tosi S (1995) Nematophagous activity on moss as cultural substratum of Arthrobotrys tortor Jarowaja isolated in Antartica. Bol Micol 10:37–41

    Google Scholar 

  • Clarke A (2003) Evolution, adaptation and diversity: global ecology in an Antarctic context. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Proceedings of the VIIIth SCAR International Biology Symposium, 27 August–1 September 2001, Vrije Universiteit, Amsterdam. Backhuys, Leiden, pp 3–17

  • Cockell C, Rettberg P, Horneck G, Scherer K, Stokes MD (2003) Measurements of microbial protection from ultraviolet radiation in polar terrestrial microhabitats. Polar Biol 26:62–69

    Google Scholar 

  • Convey P (2003) Soil faunal community response to environmental manipulation on Alexander Island, southern maritime Antarctic. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. In: Proceedings of the VIIIth SCAR International Biology Symposium, 27 August–1 September 2001, Vrije Universiteit, Amsterdam. Backhuys, Leiden, pp 74–78

    Google Scholar 

  • Day TA, Ruhland CT, Grobe CW, Xiong F (1999) Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119:24–35

    Article  Google Scholar 

  • Del Frate G, Caretta G (1990) Fungi isolated from Antarctic material. Polar Biol 11:1–7

    Google Scholar 

  • Fell JW, Statzell-Tallman A (1998) Rhodotorula F.C. Harrison. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th revised and enlarged edn. Elsevier, Amsterdam, pp 800–827

    Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:151–171

    Google Scholar 

  • Fenice M, Selbmann L, Zucconi L, Onofri S (1997) Production of extracellular enzymes by antarctic fungal strain. Polar Biol 11:1–7

    Google Scholar 

  • Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. Anim Ecol 12:42–58

    Google Scholar 

  • Ganis P (1991) La diversità specifica nelle comunità ecologiche: concetti, metodi e programmi di calcolo. Gead-Eq N 10, Trieste

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Hoyer K, Karsten U, Wiencke C (2003) Inventory of UV-absorbing mycosporine-like amino acids in polar macroalgae and factors controlling their content. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. In: Proceedings of the VIIIth SCAR international biology symposium, 27 August–1 September 2001, Vrije Universiteit, Amsterdam. Backhuys, Leiden, pp 56–62

    Google Scholar 

  • Hughes KA, Lawley B, Newsham KK (2003) Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Appl Environ Microbiol 69:1488–1491

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson K (1970) A test for comparing diversity based on the Shanon formula. J Theor Biol 29:151–154

    CAS  PubMed  Google Scholar 

  • Kappen L (1993) Lichens in Antarctic region. In: Friedmann EI (ed) Antarctic microbiology. Wiley, New York, pp 433–488

    Google Scholar 

  • Karentz D (2003) Environmental change in Antarctica: ecological impacts and responses. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. In: Proceedings of the VIIIth SCAR International Biology Symposium, 27 August–1 September 2001, Vrije Universiteit, Amsterdam. Backhuys, Leiden, , pp 45–55

    Google Scholar 

  • Karsten U, Dummermuth A, Hoyer K, Wiencke C (2003) Interactive effects of ultraviolet radiation and salinity on ecophysiology of two Arctic red algae from shallow waters. Polar Biol 26:249–258

    Google Scholar 

  • Kennedy AD (1995) Antarctic terrestrial ecosystem response to global environmental change. Annu Rev Ecol Syst 26:683–704

    Article  Google Scholar 

  • Kennedy AD (1996) Antarctic fellfield response to climatic change: a tripartite synthesis of experimental data. Oecologia 107:141–150

    Article  Google Scholar 

  • Lewis Smith RI, Wynn-Williams DD (1992) Introduction to the Biotas programme. In: Wynn-Williams DD (ed) Biotas manual of methods. Scientific Committee on Antarctic Research, Cambridge, pp 10–12

    Google Scholar 

  • Lund D, Buma AGJ, Moerdijk TCW, Huiskes AHL (2003) DNA damage and photosynthesis in Prasiola crispa ssp. antarctica and Sanionia uncinata in response to manipulated UV-B radiation. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. In: Proceedings of the VIIIth SCAR International Biology Symposium, 27 August–1 September 2001, Vrije Universiteit, Amsterdam. Backhuys, Leiden, pp 69–73

  • MacArthur RH (1957) On the relative abundance of bird species. Proc Natl Acad Sci U S A 43:293–295

    Google Scholar 

  • Madronich S, McKenzie RL, Björn LO, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J Photochem Photobiol B 46:5–19

    Article  CAS  PubMed  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London

    Google Scholar 

  • May RM (1975) Pattern of species abundance and diversity. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknapp, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Mercantini R, Marsella R, Moretto D, Finotti E (1993) Keratinophilic fungi in the Antarctic environment. Mycopthologia 122:169–175

    CAS  Google Scholar 

  • Montemartini Corte A (1991) Funghi di ambienti acquatici. In: Battaglia B, Bisol PM, Varotto V (eds) Proceedings of the 1st meeting on ‘Biology in Antarctica’ (English summaries), Rome CNR, 22–23 June 1989. Scienza e Cultura. Edizioni Universitarie Patavine, Padua, pp 67–76

  • Montemartini Corte A, Caretta G, Del Frate G (1993) Notes on Thelebolus microsporus isolated in Antarctica. Mycotaxon 48:343–358

    Google Scholar 

  • Onofri S (1999) Antarctic microfungi. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer, Dordrecht, pp 323–336

    Google Scholar 

  • Onofri S, Tosi S (1992) Arthrobotrys ferox sp. nov., a springtail-capturing hyphomycete from continental Antarctica. Mycotaxon 44:445–451

    Google Scholar 

  • Onofri S, Rambelli A, Maggi O, Persiani AM, Riess S, Tosi S, Grasselli E (1991) Micologia del Suolo. In: Battaglia B, Bisol PM, Varotto V (eds) Proceedings of the 1st meeting on ‘Biology in Antarctica’ (English summaries), Rome CNR, 22–23 June 1989. Scienza e Cultura. Edizioni Universitarie Patavine, Padua, pp 55–65

  • Onofri S, Tosi S, Persiani AM, Maggi O, Riess S, Zucconi L (1994) Mycological researches in Victoria Land terrestrial ecosystems. In: Battaglia B, Bisol PM, Varotto V (eds) Proceedings of the 2nd meeting on ‘Biology in Antarctica’ (English summaries), Padua, 26–28 February 1992. Scienza e Cultura. Edizioni Universitarie Patavine, Padua, pp 19–32

  • Patil GP, Taillie C (1976) Ecological diversity: concepts, indices and applications. In: Proceedings of the international biometric conference. Biometric Soc 2:383–411

    Google Scholar 

  • Pugh GJF (1980) Strategies in fungal ecology. Trans Br Mycol Soc 75:1–14

    Google Scholar 

  • Tosi S, Annovazzi L, Tosi I, Iadarola P, Caretta G (2002a) Collagenase production in an Antarctic strain of Arthrobotrys tortor Jarowaja. Mycopathologia 153:157–162

    Article  CAS  PubMed  Google Scholar 

  • Tosi S, Casado B, Gerdol R, Caretta G (2002b) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • Whittaker RH (1965) Dominance and diversity in land plant communities. Science 147:250–260

    Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Google Scholar 

  • Wynn-Williams DD (1993) Microbial processes and initial stabilization of fellfield soil. In: Miles J, Walton DWH (eds) Primary succession on land. Blackwell, Oxford, pp 17–32

    Google Scholar 

  • Wynn-Williams DD (1996) Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microb Ecol 31:177–188

    Article  Google Scholar 

  • Zak JC (1992) Response of soil fungal communities to disturbance. In: Carrol GC, Wicklow DT (eds) The fungal community. Its organization and role in the ecosystem, 2nd edn. Dekker, New York, pp 403–425

    Google Scholar 

  • Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16:53–61

    Google Scholar 

  • Zucconi L, Ripa C, Selbmann L, Onofri S (2002) Effects of UV on the spores of the fungal species Arthrobotrys oligospora and A. ferox. Polar Biol 25:500–505

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out in the framework of the Italian P.N.R.A., within the BIOTAS International Programme. We would like to thank Prof. W. Gams and Dr. G. J. M. Verkley (Centraalbureau voor Schimmelcultures, Utrecht, Netherlands), and Dr. J. David (International Mycological Institute, Bakeham Lane, Egham, UK), for identification of some listed species; Dr. L. Monticelli (University of Messina, Italy) for the thermometric measures at Edmonson Point; Prof. S. Valbonesi (University of Camerino, Italy) for the help in preparing the experiment; Prof. R. Bargagli (University of Siena, Italy) for collecting samples in 1995–1996; Prof. G. Caretta (University of Pavia, Italy), Dr. C. Cockell (British Antarctic Survey, Cambridge,England) and the two anonymous referees are thanked for suggesting improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tosi, S., Onofri, S., Brusoni, M. et al. Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biol 28, 470–482 (2005). https://doi.org/10.1007/s00300-004-0698-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-004-0698-x

Keywords

Navigation