Skip to main content

Abstract

Glycerol and crude glycerol from the biodiesel industry have become large scale and inexpensive products making them very attractive for biotechnological use of these carbon sources. Glycerol catabolic pathways (aerobic and anaerobic) in microorganisms (bacteria such as Klebsiella, Escherichia coli, Clostridia, or yeast) are discussed in the context of products which can be derived from glycerol with good to excellent productivities. Important products are dihydroxyacetone, 1,3-propanediol, acetol, 3-hydroxypropionic acid, ethanol, succinate, malate, aromatic amino acids, hydrogen, polyhydroxyalkanoates, lipids, various natural products, and novel fine chemicals. Glycerol and crude glycerol have become attractive carbon sources for biotechnological uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References (* are Review Articles)

  • Ainala SK, Ashok S, Ko Y, Park S (2013) Glycerol assimilation and production of 1,3-propanediol by Citrobacter amalonaticus Y19. Appl Microbiol Biotechnol 97:5001–5011

    Article  CAS  PubMed  Google Scholar 

  • Akawi L, Srirangan K, Liu X, Moo-Young M, Chou CP (2015) Engineering Escherichia coli for high-level production of propionate. J Ind Microbiol Biotechnol 42:1057–1072

    Article  CAS  PubMed  Google Scholar 

  • Altaras NE, Cameron DC (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl Environm Microbiol 65:1180–1185

    CAS  Google Scholar 

  • Andreeßen B, Steinbüchel A (2012) Biotechnological conversion of glycerol to 2-amino-1,3-propanediol (serinol) in recombinant Escherichia coli. Appl Microbiol Biotechnol 93:357–365

    Article  PubMed  CAS  Google Scholar 

  • Andreeßen B, Lange AB, Robenek H, Steinbüchel A (2010) Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environm Microbiol 76:622–626

    Article  CAS  Google Scholar 

  • Baumgärtner F, Seitz L, Sprenger GA, Albermann C (2013) Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2′-fucosyllactose. Microb Cell Fact 12:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beauchamp J, Gross PG, Vieille C (2014) Characterization of Thermotoga maritima glycerol dehydrogenase for the enzymatic production of dihydroxyacetone. Appl Microbiol Biotechnol 98:7039–7050

    Article  CAS  PubMed  Google Scholar 

  • *Behr A, Eilting J, Irawadi K et al (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10:13–30

    Article  CAS  Google Scholar 

  • Blankschien MD, Clomburg JM, Gonzalez R (2010) Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metabol Engin 12:408–419

    Article  CAS  Google Scholar 

  • Buchholz K, Collins J (2013) The roots—a short history of industrial microbiology and biotechnology. Appl Mirobiol Biotechnol 97:3747–3762

    Article  CAS  Google Scholar 

  • Camacho-Zaragoza JM, Hernández-Chávez G, Moreno-Avitia F, Ramirez-Iniguez R, Martinez A, Bolivar F, Gosset G (2016) Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microb Cell Fact 15:163

    Article  PubMed  PubMed Central  Google Scholar 

  • *Cameron DC, Tong IT (1993) Cellular and metabolic Engineering. Appl Biochem Biotechnol 38:105–140

    Article  CAS  PubMed  Google Scholar 

  • Chatzifragkou A, Papanikolaou S (2012) Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes. Appl Microbiol Biotechnol 95:13–27

    Article  CAS  PubMed  Google Scholar 

  • Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108

    Article  CAS  Google Scholar 

  • Cho S, Kim T, Woo HM, Kim Y, Lee J, Um Y (2015) High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol Biofuels 8:146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chu HS, Kim YS, Lee CM, Lee JH, Jung WS, Ahn J-H, Song SH, Choi IS, Cho KM (2015) Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli. Biotechnol Bioengin 112:356–364

    Article  CAS  Google Scholar 

  • Ciriminna R, Pina CD, Rossi M, Pagliaro M (2014) Understanding the glycerol market. Eur J Lipid Sci Technol 116:1432–1439

    Article  CAS  Google Scholar 

  • Clapés P, Fessner W-D, Sprenger GA, Samland AK (2010) Recent progress in stereoselective synthesis with aldolases. Curr Opin Chem Biol 14:154–167

    Article  PubMed  CAS  Google Scholar 

  • Clomburg JM, Gonzalez R (2011) Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol Bioengin 108:867–879

    Article  CAS  Google Scholar 

  • *Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31:20–28

    Article  CAS  PubMed  Google Scholar 

  • Colussi T, Parsonage D, Boles W, Matsuoka T, Mallett TC, Karplus PA, Claiborne A (2008) Structure of α-glycerophosphate oxidase from Streptococcus sp.: a template for the mitochondrial α-glycerophosphate dehydrogenase. Biochemistry 47:965–977

    Article  CAS  PubMed  Google Scholar 

  • Connstein W, Lüdecke K (1919) Glyceringewinnung aus Zucker. Die Naturwissenschaften 7:403–405

    Article  Google Scholar 

  • *Da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39

    Article  PubMed  CAS  Google Scholar 

  • *Deckwer W-D (1995) Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol Rev 16:143–149

    Article  CAS  Google Scholar 

  • Dietz D, Zeng A-P (2014) Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioproc Biosyst Eng 37:225–233

    Article  CAS  Google Scholar 

  • Dishisha T, Pyo S-H, Hatti-Kaul R (2015) Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated and microbial and chemical catalysis. Microb Cell Fact 14:200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobrowolski A, Mitula P, Rymowicz W, Mironczuk AM (2016) Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresource Technol 207:237–243

    Article  CAS  Google Scholar 

  • *Dobson R, Gray V, Rumbold K (2012) Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol 39:217–226

    Article  CAS  PubMed  Google Scholar 

  • Durnin G, Clomburg J, Yeates Z, Alvarez PJJ, Zygourakis K, Campbell P, Gonzalez R (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioengin 103:148–161

    Article  CAS  Google Scholar 

  • Erni B, Siebold C, Christen S, Srinivas A, Oberholzer A, Baumann U (2006) Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases. Cell Mol Life Scie 63:890–900

    Article  CAS  Google Scholar 

  • Escalante A, Cervantes AS, Gosset G, Bolívar F (2012) Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol 94:1483–1494

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Ding Y, Xian M, Xu X, Zhang R, Zhao G (2014) Production of optically pure D-lactate from glycerol by engineered Klebsiella pneumoniae strain. Bioresour Technol 172:269–275

    Article  CAS  PubMed  Google Scholar 

  • Freund A (1881) Ãœber die Bildung und Darstellung von Trimethylenalkohol aus Glycerin. Monatshefte Chem 2:636–641

    Article  Google Scholar 

  • Fukui T, Mukoyama M, Orita I, Nakamura S (2014) Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates. Appl Microbiol Biotechnol 98:7559–7568

    Article  CAS  PubMed  Google Scholar 

  • Gajdos P, Nicaud J-M, Certik M (2016) Glycerol conversion into a single cell oil by engineered Yarrowia lipolytica. Engin Life Sci. doi:10.1002/elsc.201600065 (in press)

    Google Scholar 

  • Gonzalez R, Murarka A, Dharmadi Y, Yazdani SS (2008) A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathway in Escherichia coli. Metabol Engin 10:234–245

    Article  CAS  Google Scholar 

  • Gottlieb K, Albermann C, Sprenger GA (2014) Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes. Microb Cell Fact 13:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groeger C, Sabra W, Zeng A-P (2016) Simultaneous production of 1,3-propanediol and n-butanol by Clostridium pasteurianum: in situ gas stripping and cellular metabolism. Eng Life Sci 16:664–674

    Article  CAS  Google Scholar 

  • Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, Matsushita K, Sakaki K (2009) Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol. Appl Environm Microbiol 75:7760–7766

    Article  CAS  Google Scholar 

  • Hao G, Chen H, Gu Z, Zhang H, Chen W, Chen YQ (2015) Metabolic engineering of Mortierella alpine for arachidonic acid production with glycerol as carbon source. Microb Cell Fact 14:205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heinrich D, Andressen B, Madkour MH, Al-Ghamdi MA, Shabbaj II, Steinbüchel A (2013) From waste to plastic: synthesis of poly(3-hydroxy-propionate) in Shimwellia blattae. Appl Environm Microbiol 79:3582–3589

    Article  CAS  Google Scholar 

  • Hettwer J, Oldenburg H, Flaschel E (2002) Enzymic routes to dihydroxyacetone phosphate or immediate precursors. J Mol Catal B Enzym 19–20:215–222

    Article  Google Scholar 

  • Hiremath A, Kannabiran M, Rangaswamy V (2011) 1,3-propanediol production form crude glycerol from jatropha biodiesel process. New Biotechnol 28:19–23

    Article  CAS  Google Scholar 

  • Hu Z-C, Liu Z-Q, Zheng Y-G, Shen Y-C (2010) Production of 1,3-dihydroxy-acetone from glycerol by Gluconobacter oxydans ZJB09112. J Microbiol Biotechnol 20:340–345

    CAS  PubMed  Google Scholar 

  • Huang Q, Lin Y, Yan Y (2013) Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol Bioeng 110:3188–3196

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100:260–265

    Article  CAS  PubMed  Google Scholar 

  • Jeon H-G, Cheong D-E, Han Y, Song JJ, Choi JH (2016) Itaconic acid production from glycerol using Escherichia coli harboring a random synonymous codon-substituted 5´-coding region variant of the cadA gene. Biotechnol Bioengin 113:1504–1510

    Article  CAS  Google Scholar 

  • *Jiang W, Wang S, Wang Y, Fang B (2016) Key enzymes catalyzing glycerol to 1,3-propanediol. Biotechnol Biofuels 9:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung J-Y, Yun HS, Lee J, Oh M-K (2011) Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae. J Microbiol Biotechnol 21(8):846–853

    Article  CAS  PubMed  Google Scholar 

  • Jung WS, Kang JH, Chu HS, Choi IS, Cho KS (2014) Elevated production of 3-hydroxypropionic acid by metabolic engineering of the glycerol metabolism in Escherichia coli. Metabol Eng 23:116–122

    Article  CAS  Google Scholar 

  • Karamerou EE, Theodoropoulos C, Webb C (2016) Evaluating feeding strategies for microbial oil production from glycerol by Rhodotorula gracilis. Engin Life Sci. doi:10.1002/elsc.201600073 (in press)

    Google Scholar 

  • Khamduang M, Packdibamrung K, Chutmanop J, Chisti Y, Srinophakun P (2009) Production of L-phenylalanine from glycerol by a recombinant Escherichia coli. J Ind Microbiol Biotechnol 36:1267–1274

    Article  CAS  PubMed  Google Scholar 

  • *Khanna S, Goyal A, Moholkar VS (2012) Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotech 32:235–262

    Article  CAS  Google Scholar 

  • Krauter H, Wilke T, Vorlop K-D (2012) Production of high amounts of 3-hydroxypropionaldehyde from glycerol by Lactobacillus reuteri with strongly increased biocatalyst lifetime and productivity. New Biotechnol 29:211–217

    Article  CAS  Google Scholar 

  • Kumar V, Ashok S, Park S (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 31:945–961

    Article  CAS  PubMed  Google Scholar 

  • Kumar GS, Wee Y, Lee I, Sun HJ, Zhao X, Xia S, Kim S, Lee J, Wang P, Kim J (2015) Stabilized glycerol dehydrogenase for the conversion of glycerol to dihydroxyacetone. Chem Eng J 276:283–288

    Article  CAS  Google Scholar 

  • Lamers D, van Biezen N, Martens D, Peters L, van de Zilver E, Jacobs-van Dreumel N, Wijffels RH, Lokman C (2016) Selection of oleaginous yeasts for fatty acid production. BMC Biotechnol 16:45

    Article  PubMed  PubMed Central  Google Scholar 

  • *Li C, Lesnik KL, Liu H (2013) Microbial conversion of waste glycerol from biodiesel production into value-added products. Energies 6:4739–4768

    Article  CAS  Google Scholar 

  • *Lin ECC (1996) Dissimilatory pathways for sugars, polyols, and carboxylates. In: Neidhardt FC (ed) Escherichia coli and Salmonella, 2nd edn. ASM Press, Washington, D.C, pp 307–342

    Google Scholar 

  • Litsanov B, Brocker M, Bott M (2012) Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 6:189–195

    Article  PubMed  CAS  Google Scholar 

  • Liu H-H, Ji X-J, Huang H (2015a) Biotechnological applications of Yarrowia lipolytica: past, present and future. Biotechnol Adv 33:1522–1546

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhuge X, Shin H-D, Chen RR, Li J, Du G, Chen J (2015b) Improved production of propionic acid in Propionibacterium jensenii via combinational overexpression of glycerol dehydrogenase and malate dehydrogenase from Klebsiella pneumoniae. Appl Environm Microbiol 81:2256

    Article  CAS  Google Scholar 

  • Loaces I, Rodriguez C, Amarelle V, Fabiano E, Noya F (2016) Improved glycerol to ethanol conversion by E. coli using a metagenomic fragment isolated from an anaerobic reactor. J Ind Microbiol Biotechnol 43:1405–1416

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Fu X, Zong H, Zhuge B (2016) Overexpressions of xylA and xylB in Klebsiella pneumoniae lead to enhanced 1,3-propanediol production by cofermentation of glycerol and xylose. J Microbiol Biotechnol 26:1252–1258

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Lu W, Xia Z, Wen J (2010) Enhancement of dihydroxyacetone production by a mutant of Gluconobacter oxydans. Biochem Eng J 49:61–67

    Article  CAS  Google Scholar 

  • Martinez K, de Anda R, Hernandez G, Escalante A, Gosset G, Ramirez OT, Bolivar FG (2008) Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 7:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-Gómez K, Flores N, Castañeda HM, Martínez-Batallar G, Hernández-Chávez G, Ramírez OT, Gosset G, Encarnación S, Bolivar F (2012) New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb Cell Fact 11:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCoy M (2006) Glycerin surplus. Chem Eng News 84:7–8

    Google Scholar 

  • Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF (2013) Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Biores Technol 145:254–258

    Article  CAS  Google Scholar 

  • Mejia-Caballero A, de Anda R, Hernandez-Chaverz G, Rogg S, Martinez A, Bolivar F, Castano VM, Gosset G (2016) Biosynthesis of catechol melanin from glycerol employing metabolically engineered Escherichia coli. Microb Cell Fact 15:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Mironczuk AM, Rakicka M, Biegalska A, Rymowicz W, Dobrowolski A (2015) A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol. Bioresourc Technol 198:445–455

    Article  CAS  Google Scholar 

  • Mishra P, Park G-Y, Lakshaman M, Lee H-S, Lee H, Chang MW, Ching CB, Ahn Lee D-Y (2016) Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production. Biotechnol Bioengin 113:1993–2004

    Article  CAS  Google Scholar 

  • Monthly Biodiesel Production Report; U.S. Energy Information Administration: Washington, DC, USA, June 2016. www.eia.gov

  • Muangwong A, Boontip T, Pachimsawat J, Napathorn SC (2016) Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol. Microb Cell Fact 15:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechol 14:454–459

    Article  CAS  Google Scholar 

  • Neuberg C, Reinfurth E (1918) Natürliche und erzwungene Glycerinbildung bei der alkoholischen Gärung. Biochem Z 92:234–266

    CAS  Google Scholar 

  • Overkamp KM, Bakker BM, Kötter P, Luttik MAH, van Dijken JP, Pronk JT (2002) Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl Environm Microbiol 68:2814–2821

    Article  CAS  Google Scholar 

  • Parsonage D, Luba J, Mallett TC, Claiborne A (1998) The soluble alpha-glycerophosphate oxidase from Enterococcus casseliflavus. Sequence homology with the membrane-associated dehydrogenase and kinetic analysis of the recombinant enzyme. J Biol Chem 273:23812–23822

    Article  CAS  PubMed  Google Scholar 

  • Pilo P, Vilei EM, Peterhans E, Bonvin-Klotz L, Stoffel MH, Dobbelaere D, Frey J (2005) A metabolic enzyme as a primary virulence factor of Mycoplasma mycoides subsp. mycoides small colony. J Bacteriol 187:6824–6831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posada JA, Cardona CA, Gonzalez R (2012) Analysis of the production process of optically pure d-lactic acid from raw glycerol using engineered Escherichia coli strains. Appl Biochem Biotechnol 166:680–699

    Article  CAS  PubMed  Google Scholar 

  • Pyne ME, Sokolenko S, Liu X, Srirangan K, Bruder MR, Aucoin MG, Moo-Young M, Chung DA, Chou CP (2016) Disruption of reductive 1,3-propanediol pathway triggers production of 1,2-propanediol for sustained glycerol fermentation by Clostridium pasteurianum. Appl Environm Microbiol 82:5375–5388

    Article  CAS  Google Scholar 

  • Rathnasingh C, Raj SM, Jo J-E, Park S (2009) Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol Bioengin 104:729–739

    CAS  Google Scholar 

  • Richey DP, Lin ECC (1972) Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli. J Bacteriol 112:784–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environm Microbiol 74:6216–6222

    Article  CAS  Google Scholar 

  • Rodrigues AL, Becker J, de Souza Oliveira, Lima A, Porto LM, Wittmann C (2014) Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol. Biotechnol Bioengin 111:2280–2289

    Article  CAS  Google Scholar 

  • *Rodriguez A, Martínez JA, Flores N, Escalante A, Gosset G, Bolivar F (2014) Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact 13:126

    PubMed  PubMed Central  Google Scholar 

  • Sabourin-Provost G, Hallenbeck PC (2009) High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresourc Technol 100:3513–3517

    Article  CAS  Google Scholar 

  • Sardari RRR, Dishisha T, Pyo S-H, Hatti-Kaul R (2013) Improved production of 3-hydroxypropionaldehyde by complex formation with bisulfite during biotransformation of glycerol. Biotechnol Bioeng 110:1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Sarma SJ, Brar SK, Sydney EB, Le Bihan Y, Buelna G, Soccol CR (2012) Microbial hydrogen of crude glycerol: a review. Int J Hydrog Energy 37:6473–6490

    Article  CAS  Google Scholar 

  • *Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27:895–913

    Article  CAS  PubMed  Google Scholar 

  • Schümperli M, Pellaux R, Panke S (2007) Chemical and enzymatic routes to dihydroxyacetone phosphate. Appl Microbiol Biotechnol 75:33–45

    Article  PubMed  CAS  Google Scholar 

  • Seifert C, Bowien S, Gottschalk G, Daniel R (2001) Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. Eur J Biochem 268:2369–2378

    Article  CAS  PubMed  Google Scholar 

  • Signori L, Ami D, Posteri R, Giuzzi A, Mereghetti P, Porro D, Branduardi P (2016) Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeast. Microb Cell Fact 15:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprenger GA, Hammer BA, Johnson EA, Lin ECC (1989) Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae. J Gen Microbiol 135:1255–1262

    CAS  PubMed  Google Scholar 

  • Subedi KR, Kim I, Kim J, Min B, Park C (2008) Role of GldA in dihydroxyacetone and methylglyoxal metabolism of Escherichia coli K12. FEMS Microbiol Lett 279:180–187

    Article  CAS  PubMed  Google Scholar 

  • Swinnen S, Ho P-W, Klein M, Nevoigt E (2016) Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae. Metab Eng 36:68–79

    Article  CAS  PubMed  Google Scholar 

  • *Taherzadeh M, Adler L, Lidén G (2002) Strategies for enhancing fermentative production of glycerol- a review. Enzyme Microb Technol 31:53–66

    Article  CAS  Google Scholar 

  • *Tan HW, Abdul Aziz AR, Aroua MK (2013) Glycerol production and its applications as a raw material: a review. Renew Sustain Energy Rev 27:118–127

    Article  CAS  Google Scholar 

  • Tang C-T, Ruch FE Jr., Lin ECC (1979) Purification and properties of a nicotinamide adenine dinucleotide-linked dehydrogenase that serves an Escherichia coli mutant for glycerol catabolism. J Bacteriol 140:182–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Tan Y, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environm Microbiol 75:1628–1634

    Article  CAS  Google Scholar 

  • Tong I-T, Liao HH, Cameron DC (1991) 1,3-propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl Environm Microbiol 57:3541–3546

    CAS  Google Scholar 

  • Tong W, Xu Y, Xian M, Niu W, Guo J, Liu H, Zhao G (2016) Biosynthetic pathway for acrylic acid from glycerol in recombinant Escherichia coli. Appl Microbiol Biotechnol 100:4901–4907

    Article  CAS  PubMed  Google Scholar 

  • Tran KT, Maeda T, Wood TK (2014) Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 98:4757–4770

    Article  CAS  PubMed  Google Scholar 

  • Ulmer C, Zeng A-P (2007) Microbial production of 3-hydroxypropionaldehyde from glycerol bioconversion. Chem Biochem Eng Quart 21:321–326

    CAS  Google Scholar 

  • Vimala A, Harinarayanan R (2016) Transketolase activity modulates-3-phosphate levels in Escherichia coli. Mol Microbiol 100:263–277

    Article  CAS  PubMed  Google Scholar 

  • *Wang Z-X, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19:201–223

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Cai H, Chen Z, Zhou Z (2016a) Engineering a glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation. Biotech Lett 38:1791–1797

    Article  CAS  Google Scholar 

  • Wang C, Park J-E, Choi E-S, Kim S-W (2016b) Farnesol production in Escherichia coli through the construction of a farnesol biosynthesis pathway- application of PgpB and YbjG phosphatases. Biotech J 11:1291–1297

    Article  CAS  Google Scholar 

  • Weiner M, Albermann C, Gottlieb K, Sprenger GA, Weuster-Botz D (2014a) Fed-batch production of L-phenylalanine from glycerol and ammonia with recombinant Escherichia coli. Biochem Engin J 83:62–69

    Article  CAS  Google Scholar 

  • Weiner M, Tröndle J, Albermann C, Sprenger GA, Weuster-Botz D (2014b) Carbon storage in recombinant Escherichia coli during growth on glycerol and lactic acid. Biotechnol Bioengin 111:2508–2519

    Article  CAS  Google Scholar 

  • *Wendisch VF, Meiswinkel T, Lindner S (2011) Use of glycerol in biotechnological applications. In: Montero G, Stoytcheva M (eds) Biodiesel-quality, emissions and by-products. In Tech Open Access Publisher, Rijeka/Croatia

    Google Scholar 

  • Wong MS, Li M, Black RW, Le TQ, Puthli S, Campbell P, Monticello DJ (2014) Microaerobic conversion of glycerol to ethanol in Escherichia coli. Appl Environm Microbiol 80:3276–3282

    Article  CAS  Google Scholar 

  • *Yang FX, Hanna MA, Sun RC (2012) Value-added uses for glycerol- a byproduct of biodiesel production. Biotechnol Biofuels 5:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Yuan C, Dou J, Han X, Wang H, Fang H, Zhou C (2014) Recombinant expression of glpK and glpD genes improves the accumulation of shikimic acid in E. coli grown on glycerol. World J Microbiol Biotechnol 30:3263–3272

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang S-T (2015) Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microb Cell Fact 14:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao R, Liu Q, Hu H, Wood TK, Zhang X (2015) Metabolic engineering of Escherichia coli to enhance acetol production from glycerol. Appl Microbiol Biotechnol 99:7945–7952

    Article  CAS  PubMed  Google Scholar 

  • Yazdani SS, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metabol Engin 10:340–351

    Article  CAS  Google Scholar 

  • Yu KO, Jung J, Ramzi AB, Choe SH, Kim SW, Park C, Han SO (2013) Development of a Saccharomyces cerevisiae strain for increasing the accumulation of triacylglycerol as a microbial oil feedstock for biodiesel production using glycerol as a substrate. Biotechnol Bioengin 110:343–347

    Article  CAS  Google Scholar 

  • Zambanini T, Kleineberg W, Sarikaya E, Buescher JM, Meurer G, Wierckx Blank LM (2016) Enhanced malic acid production from glycerol with high-cell density Ustilago trichophora TZ1 cultivations. Biotechnol Biofuels 9:135

    Article  PubMed  PubMed Central  Google Scholar 

  • *Zeng A-P, Sabra W (2011) Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol 22:749–757

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li Z, Pereira B, Stephanopoulos G (2015) Engineering E. coli-E. coli cocultures for production of muconic acid from glycerol. Microb Cell Fact 14:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao L, Liu J, Wang H, Xie J, Wei D (2015) Development of a two-step process for production of 3-hydroxypropionic acid from glycerol using Klebsiella pneumoniae and Gluconobacter oxydans. Bioproc Biosyst Eng 38:2487–2495

    Article  CAS  Google Scholar 

  • Zhou YJ, Yang W, Wang L, Zhu Z, Zhang S, Zhao ZK (2013) Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production. Microb Cell Fact 12:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg A. Sprenger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sprenger, G.A. (2017). Glycerol as Carbon Source for Production of Added-Value Compounds. In: Gosset, G. (eds) Engineering of Microorganisms for the Production of Chemicals and Biofuels from Renewable Resources. Springer, Cham. https://doi.org/10.1007/978-3-319-51729-2_4

Download citation

Publish with us

Policies and ethics