Skip to main content

Agrobacterium rhizogenes-Mediated Transformation in Medicinal Plants: Genetic Stability in Long-Term Culture

  • Living reference work entry
  • First Online:
Transgenesis and Secondary Metabolism

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 371 Accesses

Abstract

Variations at morphological, cytogenetical, cytochemical, biochemical, and molecular levels have been reported in cell, callus cultures, clonally propagated plants, and in regenerated plants in some plant species. Metabolic instability in the genetically manipulated transgenic cell lines with respect to secondary metabolite production has been reported by different authors in long-term in vitro culture, although in a few cases the transgenic nature of the cell lines was retained. Transgenic hairy root cultures are another promising way of production of commercially valuable secondary metabolites in vitro, which open up a new dimension of the role of plant tissue culture in secondary metabolite production. Hairy root cultures and the plants regenerated from transformed roots are well known for their cytogenetical, morphological, and biochemical stability when compared to cell suspension cultures and callus cultures. But there are very few studies on the stability of hairy roots under long-term cultural condition. Variability in Ri-transformed root cultures and regenerated Ri-transformed plants has also been reported in a few species. In the present review, the stability/instability of hairy root cultures and Ri-plants maintained in vitro for long term is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bayliss MW (1980) Chromosomal variation in plant tissues in culture. Int Rev Cytol Suppl 11A:113–144

    Google Scholar 

  2. Scowcroft WR (1985) Somaclonal variation: the myth of clonal uniformity. In: Hohn B, Dennis ES (eds) Genetic flux in plants. Springer Verlag, Berlin

    Google Scholar 

  3. Scowcroft WR, Brettell RIS, Ryan SA, Davies PA, Pallotta MA (1987) Somaclonal variation and genomic flux. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds) Plant tissue and cell culture. Alan R Liss, New York

    Google Scholar 

  4. Winfield M, Davey MR, Karp A (1993) A comparison of chromosome instability in cell suspensions of diploid, tetraploid and hexaploid wheats. Heredity 70:187–194

    Article  Google Scholar 

  5. Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249–268

    Article  CAS  Google Scholar 

  6. Jha S, Sen S (1987) Karyotype variability in regenerated plants of Urginea indica Kunth. Cytologia 52:615–626

    Article  Google Scholar 

  7. Jha S (1989) Cytological analysis of embryogenic callus and regenerated plants of Urginea indica Kunth. Indian squill. Caryologia 42:165–173

    Article  Google Scholar 

  8. Rani V, Raina SN (2000) Genetic fidelity of organized meristem-derived micropropagated plants: a critical reappraisal. In Vitro Cell Dev Biol Plant 36:319–330

    Article  CAS  Google Scholar 

  9. Hao YJ, Deng XX (2002) Occurrence of chromosomal variations and plant regeneration from long-term-cultured Citrus callus. In Vitro Cell Dev Biol Plant 38:472–476

    Article  Google Scholar 

  10. Kumar PS, Mathur VL (2004) Chromosomal instability in callus culture of Pisum sativum. Plant Cell Tiss Org Cult 78:267–271

    Article  Google Scholar 

  11. Orbovic V, Calovic M, Viloria Z, Nielsen B, Gmitter FG Jr, Castle WS, Grosser JW (2008) Analysis of genetic variability in various tissue culture-derived lemon plant populations using RAPD and flow cytometry. Euphytica 161:329–335

    Article  CAS  Google Scholar 

  12. Jain SM, Ahloowalia BS, Brar DS (2013) Somaclonal variation and induced mutations in crop improvement. Springer Science & Business Media, Dordrecht

    Google Scholar 

  13. Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  Google Scholar 

  14. Devi SP, Kumaria S, Rao SR, Tandon P (2015) Genetic fidelity assessment in micropropagated plants using cytogenetical analysis and heterochromatin distribution: a case study with Nepenthes khasiana Hook f. Protoplasma 252:1305–1312

    Article  Google Scholar 

  15. Sengupta J, Jha S, Sen S (1988) Karyotype stability in long-term callus derived plants of Crepis tectorum L. Biol Plant 30:247–251

    Article  Google Scholar 

  16. Franklin CI, Mott RL, Vuke TM (1989) Stable ploidy levels in long-term callus cultures of loblolly pine. Plant Cell Rep 8:101–104

    Article  CAS  Google Scholar 

  17. Jha S, Sen J, Sen S (1989) Stable regenerants from long-term callus cultures of Ruscus hypophyllum L. Cytologia 54:687–691

    Article  Google Scholar 

  18. Nayak S, Sen S (1995) Rapid and stable propagation of Ornithogalum umbellatum L. in long term culture. Plant Cell Rep 15:150–153

    Article  CAS  Google Scholar 

  19. Jha TB, Jha S (1989) In vitro regeneration and cytological study of Allium hookeri Thw. Indian J Exp Biol 27:363–365

    Google Scholar 

  20. Landey RB, Cenci A, Guyot R, Bertrand B, Georget F, Dechamp E, Herrera JC, Aribi J, Lashermes P, Etienne H (2015) Assessment of genetic and epigenetic changes during cell culture ageing and relations with somaclonal variation in Coffea arabica. Plant Cell Tiss Org Cult 122:517–531

    Article  CAS  Google Scholar 

  21. Hamill JD, Lidgett AJ (1997) Hairy root cultures- opportunities and key protocols for studies in metabolic engineering. In: Doran PM (ed) Hairy roots. Gordon and Breach/Harwood Academic, London

    Google Scholar 

  22. Roychowdhury D, Majumder A, Jha S (2013) Agrobacterium rhizogenes-mediated transformation in medicinal plants: prospects and challenges. In: Chandra S et al (eds) Biotechnology for medicinal plants. Springer, Berlin/Heidelberg

    Google Scholar 

  23. DiCosmo F, Misawa M (1995) Plant cell and tissue culture: alternatives for metabolite production. Biotechnol Adv 13:425–435

    Article  CAS  Google Scholar 

  24. Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  Google Scholar 

  25. Deus-Neumann B, Zenk MH (1984) Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Med 50:427–431

    Article  CAS  Google Scholar 

  26. Holden MA, Holden PR, Yeoman MM (1988) Elicitation of secondary product formation in Capsicum frutescens cultures. In: Robins RJ, Rhodes MJC (eds) Manipulating secondary metabolism in culture. Cambridge University Press, Cambridge

    Google Scholar 

  27. Evans DA, Gamborg OL (1982) Chromosome stability of cell suspension cultures of Nicotiana spp. Plant Cell Rep 1:104–107

    Article  CAS  Google Scholar 

  28. Karp A, Wu QS, Maddock SE, Jones MGK (1990) Chromosome instability in bread wheat (Triticum aestivum) cell suspensions and their dividing protoplasts. In: Bajaj YPS (ed) Wheat, vol 13. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

  29. Anrini M, Jha S (2009) Characterization of podophyllotoxin yielding cell lines of Podophyllum hexandrum. Caryologia 62:220–235

    Google Scholar 

  30. Lapitan NLV, Sears RG, Gill BS (1984) Translocations and other karyotypic structural changes in wheat x rye hybrids regenerated from tissue culture. Theor Appl Genet 68:547–554

    Article  CAS  Google Scholar 

  31. Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci 91:5222–5226

    Article  CAS  Google Scholar 

  32. Whitmer S, Canel C, Heijden RVD, Verpoorte R (2003) Long-term instability of alkaloid production by stably transformed cell lines of Catharanthus roseus. Plant Cell Tiss Org Cult 74:73–80

    Article  CAS  Google Scholar 

  33. Dubrovina AS, Kiselev KV (2012) Effect of long-term cultivation on resveratrol accumulation in a high-producing cell culture of Vitis amurensis. Acta Physiol Plant 34:1101–1106

    Article  CAS  Google Scholar 

  34. Kiselev KV, Dubrovina AS, Bulgakov VP (2009) Phenylalanine ammonia-lyase and stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis. Appl Microbiol Biotechnol 82:647–655

    Article  CAS  Google Scholar 

  35. Zeng F, Qian J, Luo W, Zhan Y, Xin Y, Yang C (2010) Stabilityof transgenes in long-termmicropropagation of plants of transgenicbirch (Betula platyphylla). Biotechnol Lett 32:151–156

    Article  CAS  Google Scholar 

  36. Guivarc’h A, Boccara M, Prouteau M, Chriqui D (1999) Instability of phenotype and gene expression in long-term culture of carrot hairy root clones. Plant Cell Rep 19:43–50

    Article  Google Scholar 

  37. Kooter JM, Matzke MA, Meyer P (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogencontrol. Trends Plant Sci 4:340–347

    Article  Google Scholar 

  38. Mette MF, Van der Winden J, Matzke MA, Matzke AJM (1999) Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J 18:241–248

    Article  CAS  Google Scholar 

  39. Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. J Biol Chem 261:108–121

    CAS  Google Scholar 

  40. Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700

    Article  CAS  Google Scholar 

  41. Bulgakov VP, Shkryl YN, Veremeichik GN, Gorpenchenko TY, Inyushkina YV (2011) Application of Agrobacterium rol genes in plant biotechnology: a natural phenomenon of secondary metabolism regulation. In: Alvarez M (ed) Genetic transformation. INTECH Open Access Publisher

    Google Scholar 

  42. Tepfer D (1984) Genetic transformation of several species of higher plants by Agrobacterium rhizogenes: phenotypic consequences and sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  CAS  Google Scholar 

  43. Hamill JD, Evans D, Robins RJ, Rhodes MJC, Prescott A, Martin C (1988) Foreign gene insertion into hairy roots with binary vectors and Agrobacterium rhizogenes: potential for genetic manipulation of plant secondary metabolism in culture. In: Robins RJ, Rhodes MJC (eds) Manipulating secondary metabolism in culture. Cambridge University Press, Cambridge

    Google Scholar 

  44. Sevón N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  Google Scholar 

  45. Aoki T, Matsumoto H, Asako Y, Matsunaga Y, Shimomura K (1997) Variation of alkaloid productivity among several clones of hairy roots and regenerated plants of Atropa belladonna transformed with Agrobacterium rhizogenes 15834. Plant Cell Rep 16:282–286

    CAS  Google Scholar 

  46. Batra J, Dutta A, Singh D, Kumar S, Sen J (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Plant Cell Rep 23:148–154

    Article  CAS  Google Scholar 

  47. Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2005) Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep 24:25–35

    Article  CAS  Google Scholar 

  48. Bandyopadhyay M, Jha S, Tepfer D (2007) Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 26:599–609

    Article  CAS  Google Scholar 

  49. Alpizar E, Dechamp E, Lapeyre-Montes F, Guilhaumon C, Bertrand B, Jourdan C, Lashermes P, Etienne H (2008) Agrobacterium rhizogenes-transformed roots of Coffee (Coffea arabica): conditions for long-term proliferation and morphological and molecular characterization. Ann Bot 101:929–940

    Article  CAS  Google Scholar 

  50. Taneja J, Jaggi M, Wankhede DP, Sinha AK (2010) Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots. Plant Cell Rep 29:1119–1129

    Article  CAS  Google Scholar 

  51. Halder M, Jha S (2016) Enhanced trans-resveratrol production in genetically transformed root cultures of Peanut (Arachis hypogaea L.). Plant Cell Tiss Org Cult 124:555–572

    Article  CAS  Google Scholar 

  52. Roychowdhury D, Basu A, Jha S (2015) Morphological and molecular variation in Ri-transformed root lines are stable in long term cultures of Tylophora indica. Plant Growth Regul 75:443–453

    Article  CAS  Google Scholar 

  53. Mano Y, Ohkawa H, Yamada Y (1989) Production of tropane alkaloids by hairy root cultures of Duboisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Sci 59:191–201

    Article  CAS  Google Scholar 

  54. Jouanin L, Guerche D, Pamboukdjian N, Tourneur C, Casse-Delbart F, Tourneur J (1987) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206:387–392

    Article  CAS  Google Scholar 

  55. Piñol MT, Palazòn J, Serrano M (1996) Effects of Ri T-DNA from Agrobacterium rhizogenes on growth and hyoscyamine production in Datura stramonium root cultures. Bot Acta 109:133–138

    Article  Google Scholar 

  56. Bulgakov VP, Khodakovskaya MV, Labetskaya NV, Chernoded GK, Zhuravlev YN (1998) The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures. Phytochemistry 49:1929–1934

    Article  CAS  Google Scholar 

  57. Spena A, Schmülling T, Koncz C, Schell J (1987) Independent and synergistic activity of Rol A, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899

    CAS  Google Scholar 

  58. Schmülling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629

    Google Scholar 

  59. Spanó L, Mariotti D, Cardarelli M, Branca C, Constantino P (1988) Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA. Plant Physiol 87:479–483

    Article  Google Scholar 

  60. Lipp Joao KH, Brown TA (1994) Long-term stability of root cultures of tomato transformed with Agrobacterium rhizogenes R1601. J Exp Bot 45:641–647

    Article  CAS  Google Scholar 

  61. Geerlings A, Hallard D, Martinez Caballero A, Lopes Cardoso I, van der Heijden R, Verpoorte R (1999) Alkaloid production by a Cinchona officinalis ‘ledgeriana’ hairy root culture containing constitutive expression constructs of tryptophan decarboxylase and strictosidine synthase cDNA from Catharanthus roseus. Plant Cell Rep 19:191–196

    Article  CAS  Google Scholar 

  62. Zdravković-Korać S, Ćalić D, Druart PH, Radojević L (2003) The horse chestnut lines harboring the rol genes. Biol Plant 47:487–491

    Article  Google Scholar 

  63. Santos PM, Figueiredo AC, Oliveira MM, Barroso JG, Pedro LG, Deans SG, Younus AKM, Scheffer JJC (1999) Morphological stability of Pimpinella anisum hairy root cultures and time-course study of their essential oils. Biotechnol Lett 21:859–864

    Article  CAS  Google Scholar 

  64. Basu A, Joshi RK, Jha S (2015) Genetic transformation of Plumbago zeylanica with Agrobacterium rhizogenes strain LBA 9402 and characterization of transformed root lines. Plant Tiss Cult Biotechnol 25:21–35

    Article  Google Scholar 

  65. Pandey P, Kaur R, Singh S, Chattopadhyay SK, Srivastava SK, Banerjee S (2014) Long-term stability in biomass and production of terpene indole alkaloids by hairy root culture of Rauvolfia serpentina and cost approximation to endorse commercial realism. Biotechnol Lett 36:1523–1528

    Article  CAS  Google Scholar 

  66. Ray S, Samanta T, Majumder A, Bandyopadhyay M, Jha S (2014) Cytogenetic characterization of Agrobacterium rhizogenes transformed root lines of Rauvolfia serpentina. Nucleus 57:105–112

    Article  Google Scholar 

  67. Marconi PL, Setten LM, Cálcena EN, Alvarez MA et al (2008) Changes in growth and tropane alkaloid production in long-term culture of hairy roots of Brugmansia candida. J Integr Biosci 3:38–44

    Google Scholar 

  68. Yukimune Y, Hara Y, Yamada Y (1994) Tropane alkaloid production in root cultures of Duboisia myoporoides obtained by repeated selection. Biosci Biotechnol Biochem 58:1443–1446

    Article  CAS  Google Scholar 

  69. Sevón N, Hiltunen R, Oksman-Caldentey KM (1998) Somaclonal variation in transformed roots and protoplast-derived hairy root clones of Hyoscyamus muticus. Planta Med 64:37–41

    Article  Google Scholar 

  70. Benson EE, Hamill JD (1991) Cryopreservation and post freeze molecular and biosynthetic stability in transformed roots of Beta vulgaris and Nicotiana rustica. Plant Cell Tiss Org Cult 24:163–172

    Article  CAS  Google Scholar 

  71. Maldonado-Mendoza IE, Ayora-Talavera T, Loyola-Vargas VM (1993) Establishment of hairy root cultures of Datura stramonium characterization and stability of tropane alkaloid production during long periods of subculturing. Plant Cell Tiss Org Cult 33:321–329

    Article  CAS  Google Scholar 

  72. Baíza AM, Quiroz-Moreno A, Ruíz JA, Loyola-Vargas VM (1999) Genetic stability of hairy root cultures of Datura stramonium. Plant Cell Tiss Org Cult 59:9–17

    Article  Google Scholar 

  73. Dechaux C, Boite-Conti M (2005) A strategy for overaccumulation of scopolamine in Datura innoxia hairy root cultures. Acta Biol Cracov Bot 47:101–107

    Google Scholar 

  74. Jouhikainen K, Lindgren L, Jokelainen T, Hiltunen R, Teeri TH, Oksman-Caldentey KM (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root culture by genetic engineering. Planta 208:545–551

    Article  CAS  Google Scholar 

  75. Maldonado-Mendoza IE, Ayora-Talavera TRD, Loyola-Vargas VM (1992) Tropane alkaloid production in Datura stramonium root cultures. In Vitro Cell Dev Biol Plant 28:67–72

    Article  Google Scholar 

  76. Mehrotra S, Goel MK, Rahman LU, Kukreja AK (2013) Molecular and chemical characterization of plants regenerated from Ri-mediated hairy root cultures of Rauwolfia serpentina. Plant Cell Tiss Org Cult 114:31–38

    Article  CAS  Google Scholar 

  77. Ambros PF, Matzke AJM, Matzke MA (1986) Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBO J 5:2073–2077

    CAS  Google Scholar 

  78. Aird ELH, Hamill JD, Rhodes MJC (1988) Cytogenetic analysis of hairy root cultures from a number of plant species transformed by Agrobacterium rhizogenes. Plant Cell Tiss Org Cult 15:47–57

    Article  Google Scholar 

  79. Ermayanti TM, McComb JA, O’Brien PA (1992) Cytological analysis of seedling roots, transformed root cultures and roots regenerated from callus of Swainsona galegifolia (Andr.) R. Br. J Exp Bot 44:375–380

    Article  Google Scholar 

  80. Mukherjee S, Das S, Jha S (1994) Chromosomal stability in transformed hairy root cultures of Artemissia annua L. Cell Chromos Res 17:71–76

    Google Scholar 

  81. Webb KJ, Jones S, Robbins MP, Minchin FR (1990) Characterization of transgenic root cultures of Trifolium repens, Trifolium pratense and Lotus corniculatus and transgenic plants of Lotus corniculatus. Plant Sci 70:243–254

    Article  Google Scholar 

  82. Ermayanti TM, Octavia Y, Hafizh EA (2004) Cytological analysis of root cultures of Artemissia cina. Ann Bogoriensesns 9:50–58

    Google Scholar 

  83. Ramsay G, Kumar A (1990) Transformation of Vicia faba cotyledon and stem tissues by Agrobacterium rhizogenes: infectivity and cytological studies. J Exp Bot 41:841–847

    Article  Google Scholar 

  84. Banerjee-Chattopadhyay S, Schwemmin AM, Schwemmin DJ (1985) A study of karyotypes and their alterations in cultured and Agrobacterium transformed roots of Lycopersicon peruvianum Mill. Theor Appl Genet 71:258–262

    CAS  Google Scholar 

  85. Vries-Uijtewaal ED, Gilissen LJW, Flipse E, Sree Ramulu K, De Groot B (1988) Characterization of root clones obtained after transformation of monohaploid and diploid potato genotypes with hairy root inducing strains of Agrobacterium. Plant Sci 58:193–202

    Article  Google Scholar 

  86. Xu Z-Q, Jia J-F (1996) The reduction of chromosome number and the loss of generation ability during subculture of hairy root cultures of Onobrychis viciaefolia transformed by Agrobacterium rhizogenes. Plant Sci 120:107–112

    Article  CAS  Google Scholar 

  87. Hänisch ten Cate CH, Loonen AE, Ottaviani MP, Ennik L, van Eldik G, Stiekema WJ (1990) Frequent spontaneous deletions of Ri T-DNA in Agrobacterium rhizogenes transformed potato roots and regenerated plants. Plant Mol Biol 14:735–741

    Article  Google Scholar 

  88. Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473

    Article  CAS  Google Scholar 

  89. Kamada H, Saitou T, Harada H (1992) No requirement of vernalization for flower formation in Ri-transformed Cichorium plants. Plant Tiss Cult Lett 9:206–208

    Article  CAS  Google Scholar 

  90. Sun LY, Touraud G, Charbonnier C, Tepfer D (1991) Modification of phenotype in Belgian endive (Cichorium intybus) through genetic transformation by Agrobacterium rhizogenes: conversion from biennial to annual flowering. Transgenic Res 1:14–22

    Article  CAS  Google Scholar 

  91. Rugini E, Caricato G, Muganu M, Taratufolo C, Camilli M, Cammilli C (1997) Genetic stability and agronomic evaluation of six year-old transgenic kiwi plants for rolABC and rolB gene. Acta Hortic 447:609–610

    Article  Google Scholar 

  92. Roychowdhury D, Ghosh B, Chaubey B, Jha S (2013) Genetic and morphological stability of six-year-old transgenic Tylophora indica plants. Nucleus 56:81–89

    Article  Google Scholar 

  93. Roychowdhury D, Chaubey B, Jha S (2015) The fate of integrated Ri T-DNA rol genes during regeneration via somatic embryogenesis in Tylophora indica. J Bot 2015:16

    Google Scholar 

  94. Paul P, Sarkar S, Jha S (2015) Effects associated with insertion of cryptogein gene utilizing Ri and Ti plasmids on morphology and secondary metabolites are stable in Bacopa monnieri transformed plants grown in vitro and ex vitro. Plant Biotechnol Rep 9:231–245

    Article  Google Scholar 

  95. Verma P, Sharma A, Khan SA, Mathur AK, Shanker K (2015) Morphogenetic and chemical stability of long-term maintained Agrobacterium-mediated transgenic Catharanthus roseus plants. Nat Prod Res 29:315–320

    Article  CAS  Google Scholar 

  96. Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2006) Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation by Agrobacterium rhizogenes. Plant Cell Rep 25:1059–1066

    Article  CAS  Google Scholar 

  97. Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW Jr (2004) Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep 22:828–831

    Article  CAS  Google Scholar 

  98. Giovannini A, Pecchioni N, Rabaglio M, Allavena A (1997) Characterization of ornamental Datura plants transformed by Agrobacterium rhizogenes. In Vitro Cell Dev Biol Plant 33:101–106

    Article  Google Scholar 

  99. Mercuri A, Bruna S, Benedetti LD, Burchi G, Schiva T (2001) Modification of plant architecture in Limonium spp. induced by rol genes. Plant Cell Tiss Org Cult 65:247–253

    Article  CAS  Google Scholar 

  100. Christensen B, Sriskandarajah S, Müller R (2009) Biomass distribution in Kalanchoe blossfeldiana transformed with rol-genes of Agrobacterium rhizogenes. Hortic Sci 44:1233–1237

    Google Scholar 

  101. Saxena G, Banerjee S, ur Rahman L, Verma PC, Mallavarapu GR, Kumar S (2007) Rose-scented geranium (Pelargonium sp.) generated by Agrobacterium rhizogenes mediated Ri-insertion for improved essential oil quality. Plant Cell Tiss Org Cult 90:215–223

    Article  CAS  Google Scholar 

  102. Satheeshkumar K, Jose B, Soniya EV, Seeni S (2009) Isolation of morphovariants through plant regeneration in Agrobacterium rhizogenes induced hairy root cultures of Plumbago rosea L. Indian J Biotechnol 8:435–441

    CAS  Google Scholar 

  103. Christey MC, Braun RH, Reader JK (1999) Field performance of transgenic vegetable Brassicas (Brassica oleracea and B. rapa) transformed with Agrobacterium rhizogenes. SABRAO J Breed Genet 31:93–108

    Google Scholar 

  104. Shahin EA, Sukhapinda K, Simpson RB, Spivey R (1986) Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phenotypes harbour binary vector T-DNA, but no Ri-plasmid T-DNA. Theor Appl Genet 72:770–777

    Article  CAS  Google Scholar 

  105. Manners JM, Way H (1989) Efficient transformation with regeneration of the tropical pasture legume Stylosanthes humilis using Agrobacterium rhizogenes and a Ti plasmid binary vector system. Plant Cell Rep 8:341–345

    Article  CAS  Google Scholar 

  106. Hatamoto H, Boulter ME, Shirsat AH, Croy EJ, Ellis JR (1990) Recovery of morphologically normal transgenic tobacco from hairy roots co-transformed with Agrobacterium rhizogenes and a binary vector plasmid. Plant Cell Rep 9:88–92

    Article  CAS  Google Scholar 

  107. Boulter ME, Croy E, Simpson P, Shields R, Croy RRD, Shirsat AH (1990) Transformation of Brassica napus L. (oilseed rape) using Agrobacterium tumefaciens and Agrobacterium rhizogenes- a comparison. Plant Sci 70:91–99

    Article  CAS  Google Scholar 

  108. Braun RH, Reader JK, Christey MC (2000) Evaluation of cauliflower transgenic for resistance to Xanthomonas campestris pv. campestris. Acta Hortic 539:137–143

    Article  CAS  Google Scholar 

  109. Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DAC (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes mediated cotransformation and selection of transformed hairy roots by GUS assay. Mol Breed 7:229–242

    Article  CAS  Google Scholar 

  110. Stam M, Joseph NMM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    Article  CAS  Google Scholar 

  111. Li XG, Chen SB, Lu ZX, Chang TJ, Zeng QC, Zhu Z (2002) Impact of copy number on transgene expression in tobacco. Acta Bot Sin 44:120–123

    CAS  Google Scholar 

  112. Tang W, Ronald JN, Douglas AW (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot 58:545–554

    Article  CAS  Google Scholar 

  113. Hänisch ten Cate CH, Ennik E, Roest S, Sree Ramulu K, Dijkhuis P, De Groot B (1988) Regeneration and characterization of plants from potato root lines transformed by Agrobacterium rhizogenes. Theor Appl Genet 75:452–459

    Article  Google Scholar 

  114. Sevón N, Oksman-Caldentey KM, Hiltunen R (1995) Efficient plant regeneration from hairy root-derived protoplasts of Hyoscyamus muticus. Plant Cell Rep 14:738–742

    Article  Google Scholar 

  115. Sevón N, Dräger B, Hiltunen R, Oksman-Caldentey KM (1997) Characterization of transgenic plants derived from hairy roots of Hyoscyamus muticus. Plant Cell Rep 16:605–611

    Article  Google Scholar 

  116. Samaddar T, Nath S, Halder M, Sil B, Roychowdhury D, Sen S et al (2012) Karyotype analysis of three important traditional Indian medicinal plants, Bacopa monnieri, Tylophora indica and Withania somnifera. Nucleus 55:17–20

    Article  Google Scholar 

  117. Trulson AJ, Simpson RB, Shahin EA (1986) Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes. Theor Appl Genet 73:11–15

    Article  CAS  Google Scholar 

  118. Atkinson RG, Gardner R (1991) Agrobacterium-mediated transformation of pepino and regeneration of transgenic plants. Plant Cell Rep 10:208–212

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dipasree Roychowdhury , Mihir Halder or Sumita Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Roychowdhury, D., Halder, M., Jha, S. (2016). Agrobacterium rhizogenes-Mediated Transformation in Medicinal Plants: Genetic Stability in Long-Term Culture. In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27490-4_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27490-4_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-27490-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics