Skip to main content
Log in

Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Hairy roots are generated by integration of T-DNA in host plant genome from root inducing (Ri) plasmid of Agrobacterium rhizogenes and have been utilized for production of secondary metabolites in different plant systems. In Catharanthus roseus, hairy roots are known to show different morphologies, growth patterns, and alkaloid contents. It is also known that during transformation, there is a differential loss of a few T-DNA genes. To decipher the effect of loss of T-DNA genes on the various aspects of hairy roots, ten hairy root clones were analyzed for the presence or absence of T-DNA genes and its implications. It was found that the loss of a few ORFs drastically affects the growth and morphological patterns of hairy roots. The absence of TR-DNA from hairy roots revealed increased transcript accumulation and higher alkaloid concentrations, whereas callusing among hairy root lines led to decreased transcript and alkaloid accumulation. Significantly higher expression of MIA biosynthetic pathway genes and low abundance of regulator transcripts in hairy root clones in comparison with non-transformed control roots were also observed. This study indicates that it is not only the integration of T-DNA at certain region of host plant genome but also the presence or absence of important ORFs that affects the expression patterns of MIA biosynthetic pathway genes, regulators, and accumulation of specific alkaloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MIAs:

Monoterpenoid indole alkaloids

Ri:

Root inducing plasmid

rol:

Root locus

T-DNA:

Transferred DNA

TL-DNA:

Left transferred DNA

TR-DNA:

Right transferred DNA

dw:

Dry weight

References

  • Aoki S, Syono K (1999) Synergistic function of rolB, rolC, ORF13 and ORF14 of TL-DNA of Agrobacterium rhizogenes in hairy root induction in Nicotiana tabacum. Plant Cell Physiol 40:252–256

    CAS  Google Scholar 

  • Batra J, Dutta A, Singh D, Kumar S, Sen J (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Plant Cell Rep 23:148–154

    Article  PubMed  CAS  Google Scholar 

  • Bhadra R, Vani S, Shanks JV (1993) Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnol Bioeng 41:581–592

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme V, Laurain-Mattar D, Fliniaux MA (2000) Effects of rolC gene on hairy root: induction development and tropane alkaloid production by Atropa belladonna. J Nat Prod 63:1249–1252

    Article  PubMed  CAS  Google Scholar 

  • Bouchez D, Tourneur J (1991) Organization of the agropine synthesis region of the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid 25:27–39

    Article  PubMed  CAS  Google Scholar 

  • Brillanceau MH, David C, Tempe J (1989) Genetic transformation of Catharanthus roseus G. Don by Agrobacterium rhizogenes. Plant Cell Rep 8:63–66

    Article  CAS  Google Scholar 

  • Broun P (2005) Transcriptional control of flavonoid biosynthesis, a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8:430–435

    Article  CAS  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    Article  PubMed  CAS  Google Scholar 

  • Camilleri C, Jouanin L (1991) The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizogenes agropine-type plasmid pRiA4: nucleotide sequence analysis and introduction into tobacco plants. Mol Plant Microbe Interact 4:155–162

    PubMed  CAS  Google Scholar 

  • Capone I, Spano L, Cardarelli M, Bellincampi D, Petit A, Costantino P (1989) Induction and growth properties of carrot roots with different complements of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 13:43–52

    Article  PubMed  CAS  Google Scholar 

  • Chilton M-D, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempe J (1982) Agrobacterium rhizogenes inserts T-DNA into the genome of the host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700

    Article  CAS  Google Scholar 

  • Constabel F, Gaudet-LaPraire P, Kurz WGW, Kutney JP (1982) Alkaloid production in Catharanthus roseus cell cultures. XII Biosynthetic capacity of callus from original explants and regenerated shoots. Plant Cell Rep 1:139–142

    Article  Google Scholar 

  • Costa MMR, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Barcelo AR, Sottomayor M (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146:403–417

    Article  PubMed  CAS  Google Scholar 

  • Dutta A, Batra J, Pandey-Rai S, Singh D, Kumar S, Sen J (2005) Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus L. G. Don. Planta 220:376–383

    Article  PubMed  CAS  Google Scholar 

  • Dutta A, Singh D, Kumar S, Sen J (2007) Transcript profiling of terpenoid indole alkaloid pathway genes and regulators reveals strong expression of repressors in Catharanthus roseus cell cultures. Plant Cell Rep 26:907–915

    Article  PubMed  CAS  Google Scholar 

  • El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6:277–305

    Article  CAS  Google Scholar 

  • Firn RD, Wagstaff C, Digby J (2000) The use of mutants to probe models of gravitropism. J Exp Bot 51:1323–1340

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gantet P, Memelink J (2002) Transcription factors, tools to engineer the production of pharmacologically active plant metabolites. Trends Pharmacol Sci 23:563–569

    Article  PubMed  CAS  Google Scholar 

  • Hansen G, Vaubert D, Héron JN, Clérot D, Tempe J, Brevet J (1993) Phenotypic effects of overexpression of Agrobacterium rhizogenes T-DNA ORF13 in transgenic tobacco plants are mediated by diffusible factor(s). Plant J 4:581–585

    Article  CAS  Google Scholar 

  • Hong SB, Peebles CA, Shanks JV, San KY, Gibson SI (2006) Terpenoid indole alkaloid production by Catharanthus roseus hairy roots induced by Agrobacterium tumefaciens harboring rol ABC genes. Biotechnol Bioeng 93:386–390

    Article  PubMed  CAS  Google Scholar 

  • Huffman GA, White FF, Gordon MP, Nester EW (1984) Hairy root inducing plasmid, physical map and homology to tumor inducing plasmids. J Bacteriol 157:269–276

    PubMed  CAS  Google Scholar 

  • Jouanin L (1984) Restriction map of an agropine type Ri plasmid and its homologies with Ti plasmids. Plasmid 12:91–102

    Article  PubMed  CAS  Google Scholar 

  • Jung KH, Kwak SS, Kim SW, Lee H, Choi CY, Liu JR (1992) Improvement of the catharanthine productivity in hairy root cultures of Catharanthus roseus by using monosaccharides as a carbon source. Biotechnol Lett 14:695–700

    Article  CAS  Google Scholar 

  • Kim YS, Soh WY (1996) Amyloplast distribution in hairy roots induced by infection with Agrobacterium rhizogenes. Biol Sci Space 10:102–104

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dutta A, Sinha AK, Sen J (2007) Cloning, characterization and localization of a novel basic peroxidase gene from Catharanthus roseus. FEBS J 274:1290–1303

    Article  PubMed  CAS  Google Scholar 

  • Kutchan TM, Ayabe S, Krueger RJ, Coscia EM, Coscia CJ (1983) Cytodifferentiation and alkaloid accumulation in cultured cells of Papaver bracteatum. Plant Cell Rep 2:281–284

    Article  CAS  Google Scholar 

  • Laflamme P, St-Pierre B, De Luca V (2001) Molecular and biochemical analysis of a Madagascar periwinkle root-specific minovincinine-19-hydroxy-O-acetyltransferase. Plant Physiol 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Lemcke K, Schmulling T (1998) Gain of function assays identify non-rol genes from Agrobacterium rhizogenes TL-DNA that alter plant morphogenesis or hormone sensitivity. Plant J 15:423–433

    Article  PubMed  CAS  Google Scholar 

  • Magnotta M, Murata J, Chen J, De Luca V (2007) Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68:1922–1931

    Article  PubMed  CAS  Google Scholar 

  • Mahroug S, Burlat V, St-Pierre B (2007) Cellular and sub-cellular organisation of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Phytochem Rev 6:363–381

    Article  CAS  Google Scholar 

  • Memelink J, Gantet P (2007) Transcription factors involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Phytochem Rev 6:353–362

    Article  CAS  Google Scholar 

  • Menke FLH, Kijne JW, Memelink J (1996) Digging for gene expression levels in Catharanthus roseus: nonradioactive detection of plant mRNA levels. In: Leous M, Matter K, Schroder C, Ziebolz B (eds) Biochemica 2. Boehringer-Mannheim, Mannheim, Germany, pp 16–18

    Google Scholar 

  • Moreno PRH, van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus (L.) G. Don: a literature survey II. Updating from 1988 to 1993. Plant Cell Tissue Organ Cult 42:1–25

  • Moreno-Valenzuela OA, Galaz-Avalos RM, Minero-garcia Y, Loyola-Vargas VM (1998) Effect of differentiation on the regulation of indole alkaloid production in Catharanthus roseus hairy roots. Plant Cell Rep 18:99–104

    Article  CAS  Google Scholar 

  • Otten L, Helfer A (2001) Biological activity of the rolB-like 5′ end of the A4-orf8 gene from the Agrobacterium rhizogenes TL-DNA. Mol Plant Microbe Interact 14:405–411

    Article  PubMed  CAS  Google Scholar 

  • Ouartsi A, Clérot D, Meyer AD, Dessaux Y, Brevet J, Bonfill M (2004) The T-DNA ORF8 of the cucumopine-type Agrobacterium rhizogenes Ri plasmid is involved in auxin response in transgenic tobacco. Plant Sci 166:557–567

    Article  CAS  Google Scholar 

  • Parr AJ, Peerless ACJ, Hamill JD, Walton NJ, Robins RJ, Rhodes MJC (1988) Alkaloid production by transformed root cultures of Catharanthus roseus. Plant Cell Rep 7:309–312

    Article  CAS  Google Scholar 

  • Pauw B, Hilliou FA, Martin VS, Chatel G, de Wolf CJ, Champion A, Pre M, van Duijn B, Kijne JW, van der Fits L, Memelink J (2004) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem 279:52940–52948

    Article  PubMed  CAS  Google Scholar 

  • Peebles CA, Hughes EH, Shanks JV, San KY (2009) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng 11:76–86

    Article  PubMed  CAS  Google Scholar 

  • Rijhwani SK, Shanks JV (1998) Effect of subculture cycle on growth and indole alkaloid production by Catharanthus roseus hairy root cultures. Enzyme Microb Technol 22:606–611

    Article  CAS  Google Scholar 

  • Saito K, Yamazaki M, Murakoshi I (1992) Transgenic medicinal plants, Agrobacterium mediated foreign gene transfer and production of secondary metabolites. J Nat Prod 55:149–162

    Article  PubMed  CAS  Google Scholar 

  • Shalel-Levanon S, San KY, Bennett GN (2005) Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metab Eng 7:364–374

    Article  PubMed  CAS  Google Scholar 

  • Siberil Y, Benhamron S, Memelink J, Giglioli-Guivarc’h N, Thiersault M, Boisson B, Doireau P, Gantet P (2001) Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Mol Biol 45:477–488

    Article  PubMed  CAS  Google Scholar 

  • Singh DV, Maithy A, Verma RK, Gupta MM, Kumar S (2000) Simultaneous determination of Catharanthus alkaloids using reversed phase high performance liquid chromatography. J Liq Chromatogr 23:601–607

    Article  CAS  Google Scholar 

  • Spena A, Schmulling T, Koncz C, Schell J (1987) Independent and synergistic activity of rol A, B, C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899

    PubMed  CAS  Google Scholar 

  • St-Pierre B, Laflamme P, Alarco AM, De Luca V (1998) The terminal O-acetyl transferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A-dependent acyl transfer. Plant J 14:703–713

    Article  PubMed  CAS  Google Scholar 

  • Tikhomiroff C, Jolicoeur M (2002) Screening of Catharanthus roseus secondary metabolites by high-performance liquid chromatography. J Chromatogr 955:87–93

    Article  CAS  Google Scholar 

  • Toivonen L, Balsevich J, Kurz WGW (1989) Indole alkaloid production by hairy root cultures of Catharanthus roseus. Plant Cell Tissue Organ Cult 18:79–93

    Article  CAS  Google Scholar 

  • Umber M, Voll L, Weber A, Michler P, Otten L (2002) The rolB-like part of the Agrobacterium rhizogenes orf8 gene inhibits sucrose export in tobacco. Mol Plant Microbe Interact 15:956–962

    Article  PubMed  CAS  Google Scholar 

  • Umber M, Clement B, Otten L (2005) The T-DNA oncogene A4-orf8 from Agrobacterium rhizogenes A4 induces abnormal growth in tobacco. Mol Plant Microbe Interact 18:205–211

    Article  PubMed  CAS  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25:43–53

    Article  PubMed  Google Scholar 

  • Vazquez-Flota F, Carolis ED, Alarco AM, De Luca V (1997) Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus L. G. Don. Plant Mol Biol 34:935–948

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Flota F, De Luca V, Carrillo-Pech M, Canto-Flick A, de Lourdes Miranda-Ham M (2002) Vindoline biosynthesis is transcriptionally blocked in Catharanthus roseus cell suspension cultures. Mol Biotechnol 22:1–8

    Article  PubMed  CAS  Google Scholar 

  • Vitha S, Yang M, Kiss JZ, Sack FD (1998) Light promotion of hypocotyl gravitropism of a starch-deficient tobacco mutant correlates with plastid enlargement and sedimentation. Plant Physiol 116:495–502

    Article  PubMed  CAS  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

JB and MJ thank Council of Scientific and Industrial Research (CSIR), India while DPW thanks University Grant Commission, India for the award of senior research fellowships. This work is supported by financial assistance from the core grant of National Institute of Plant Genome Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Krishna Sinha.

Additional information

Communicated by P. Lakshmanan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taneja, J., Jaggi, M., Wankhede, D.P. et al. Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots. Plant Cell Rep 29, 1119–1129 (2010). https://doi.org/10.1007/s00299-010-0895-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0895-8

Keywords

Navigation