Skip to main content
Log in

Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation by Agrobacterium rhizogenes

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

We examined the effects of genetic transformation by Agrobacterium rhizogenes on the production of tylophorine, a phenanthroindolizidine alkaloid, in the Indian medicinal plant, Tylophora indica. Transformed roots induced by the bacterium grew in axenic culture and produced shoots or embryogenic calli in the absence of hormone treatments. However, hormonal treatment was required to regenerate shoots in root explants of wild type control plants. Transformed plants showed morphological features typically seen in transgenic plants produced by A. rhizogenes, which include, short internodes, small and wrinkled leaves, more branches and numerous plagiotropic roots. Plants regenerated from transformed roots showed increased biomass accumulation (350–510% in the roots and 200–320% in the whole plants) and augmented tylophorine content (20–60%) in the shoots, resulting in a 160–280% increase in tylophorine production in different clones grown in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BA:

6-Benzyl adenine

BM:

Basal medium

HPLC:

High performance liquid chromatography

Ri:

Root-inducing

T-DNA:

Transferred DNA

TL-DNA:

Left-handed T-DNA

WT:

Wild type

References

  • Aoki T, Matsumoto H, Asako Y, Matsunaga Y, Shimomura K (1997) Variation of alkaloid productivity among several clones of hairy roots and regenerated plants of Atropa belladonna transformed with Agrobacterium rhizogenes 15864. Plant Cell Rep 16:282–286

    CAS  Google Scholar 

  • Arroo RRJ, Develi A, Meijers H, Van de Westerlo E, Kemp AK, Croes AF, Wullems GJ (1995) Effects of exogenous auxin on root morphology and secondary metabolism in Tagetes patula hairy root cultures. Physiol Plant 93:233–240

    Article  CAS  Google Scholar 

  • Ben-Hayyim G, Martin-Tanguy J, Tepfer D (1996) Changing root and shoot architecture with the rolA gene from Agrobacterium rhizogenes: interactions with gibberellic acid and polyamine metabolism. Physiol Plant 96:237–243

    Article  CAS  Google Scholar 

  • Benzamine BD, Heble MR, Chadha MS (1979) Alkaloid synthesis in tissue culture and regenerated plants of Tylophora indica Merr. (Asclepiadaceae). Z Pflanzenphysiol 92:77–84

    Google Scholar 

  • Borisjuk NV, Borisjuk LG, Logendra S, Petersen F, Gleba Y, Raskin I (1999) Production of recombinant proteins in plant root exudates. Nat Biotechnol 17:466–469

    Article  PubMed  CAS  Google Scholar 

  • Cabrera-Ponce JS, Vegas-Garcia A, Herrera-Estrella L (1996) Regeneration of transgenic papaya plants via somatic embryogenesis induced by Agrobacterium rhizogenes. In Vitro Cell Dev Biol Plant 32:86–90

    Google Scholar 

  • Casanova E, Zuker A, Trillas MI, Moysset L, Vainstein A (2003) The rolC gene in carnation exhibits cytokinin- and auxin-like activities. Sci Hort 97:321–331

    Article  CAS  Google Scholar 

  • Celma CR, Palazón J, Cusidó RM, Piñol MT, Keil M (2001) Decreased scopolamine yield in field-grown Duboisia plants regenerated from hairy roots. Planta Med 67:249–253

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri KN, Ghosh B, Jha S (2004) The root: a potential new source of competent cells for high-frequency regeneration in Tylophora indica. Plant Cell Rep 22:731–740

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2005) Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep 24:25–35

    Article  PubMed  CAS  Google Scholar 

  • Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW, Liu JR (2004) Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep 22:828–831

    Article  PubMed  CAS  Google Scholar 

  • Christey MC (1997) Transgenic crop plants using Agrobacterium rhizogenes-mediated transformation. In: Doran PM (ed) Hairy roots: culture and applications. Harwood Academic Publishers, Amsterdam, pp 99–110

    Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F-tests. Biometrics 11:1–42

    Article  Google Scholar 

  • Gao W, Lam W, Zhong S, Kaczmarek C, Baker DC, Cheng Y-C (2004) Novel mode of action of tylophorine analogs as antitumor compounds. Cancer Res 64:678–688

    Article  PubMed  CAS  Google Scholar 

  • Ganguly T, Sainis KB (2001) Inhibition of cellular immune response by Tylophora indica in experimental models. Phytomedicine 8:348–355

    Article  PubMed  CAS  Google Scholar 

  • Gellert E (1982) The indolizidine alkaloids. J Nat Prod 45:50–73

    Article  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  PubMed  CAS  Google Scholar 

  • Gutièrrez-Pesce P, Taylor K, Muleo R, Rugini E (1998) Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry root stock Colt (Prunus avium × P. pseudocerasus) mediated by pRi 1855 T-DNA of Agrobacterium rhizogenes. Plant Cell Rep 17:574–580

    Article  Google Scholar 

  • Hamill JD, Rhodes MJC (1988) A spontaneous, light independent and prolific plant regeneration response from hairy roots of Nicotiana hesperis transformed by Agrobacterium rhizogenes. J Plant Physiol 133:506–509

    CAS  Google Scholar 

  • Jaziri M, Yoshimatsu K, Homès J, Shimomura K (1994) Traits of transgenic Atropa belladonna doubly transformed with different Agrobacterium rhizogenes strains. Plant Cell Tiss Org Cult 38:257–262

    Article  CAS  Google Scholar 

  • Jung G, Tepfer D (1987) Use of genetic transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots grown in vitro. Plant Sci 50:145–152

    Article  CAS  Google Scholar 

  • Karnick CR (1975) Phytochemical investigations of some Tylophora species found in India. Planta Med 27:333–336

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Yoon ES, Jeong JH, Choi YE (2004) Agrobacterium rhizogenes-mediated transformation of Taraxacum platycarpum and changes of morphological characters. Plant Cell Rep 22:822–827

    Article  PubMed  CAS  Google Scholar 

  • Leljak-Levani D, Balen B, Mihaljevi S, Jeleni S, Jelaska S (2004) Formation of embryogenic callus in hairy roots of pumpkin (Cucurbita pepo L.). In Vitro Cell Dev Biol Plant 40:182–187

    Article  Google Scholar 

  • Limami MA, Sun LY, Douat C, Helgeson J, Tepfer D (1998) Natural genetic transformation by Agrobacterium rhizogenes: annual flowering in two biennials, Belgian endive and carrot. Plant Physiol 118:543–550

    Article  PubMed  CAS  Google Scholar 

  • Martin-Tanguy J, Sun LY, Burtin D, Vernoy R, Rossin N, Tepfer D (1996) Attenuation of the phenotype caused by the root-inducing, left-handed, transferred DNA and its rolA gene. Plant Physiol 111:259–267

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Noda T, Tanaka N, Mano Y, Nabeshima H, Ohkawa H, Matsui C (1987) Regeneration of horseradish hairy roots incited by Agrobacterium rhizogenes infection. Plant Cell Rep 6:283–286

    Article  Google Scholar 

  • Ohara A, Akasaka Y, Daimon H, Mii M (2000) Plant regeneration from hairy roots induced by infection with Agrobacterium rhizogenes in Crotalaria juncea L. Plant Cell Rep 19:563–568

    Article  CAS  Google Scholar 

  • Oksman-Caldentey K-M, Kivelä O, Hiltunen R (1991) Spontaneous shoot organogenesis and plant regeneration from hairy root cultures of Hyoscyamus muticus. Science 78:129–136

    CAS  Google Scholar 

  • Parr AJ, Hamill JD (1987) Relationship between Agrobacterium rhizogenes transformed hairy roots and intact, uninfected Nicotiana plants. Phytochemistry 26:3241–3245

    Article  CAS  Google Scholar 

  • Peres LEP, Morgante PG, Vecchi C, Kraus JE, van Sluys M-A (2001) Shoot regeneration capacity from roots and transgenic hairy roots of tomato cultivars and wild related species. Plant Cell Tiss Org Cult 65:37–44

    Article  CAS  Google Scholar 

  • Pérez-Molphe-Balch E, Ochoa-Alejo N (1998) Regeneration of transgenic plants of Mexican lime from Agrobacterium rhizogenes-transformed tissues. Plant Cell Rep 17:591–596

    Article  Google Scholar 

  • Petit A, Stougaard J, Kühle A, Marcker KA, Tempé J (1987) Transformation and regeneration of the legume Lotus corniculatus: a system for molecular studies for of symbiotic nitrogen fixation. Mol Gen Genet 207:245–250

    Article  CAS  Google Scholar 

  • Schmülling T, Schell J, Spéna A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629

    PubMed  Google Scholar 

  • Sevón N, Dräger B, Hiltunen R, Oksman-Caldentey K-M (1997) Characterization of transgenic plants derived from hairy roots of Hyoscyamus muticus. Plant Cell Rep 16:605–611

    Article  Google Scholar 

  • Shen WH, Petit A, Guern J, Tempé J (1988) Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci USA 85:3417–3421

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1987) Introduction to biostatistics. WH Freeman, New York

    Google Scholar 

  • Spéna A, Schmülling T, Koncz C, Schell J (1987) independent and synergystic activity of rolA, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899

    PubMed  Google Scholar 

  • Tanaka N, Matsumoto T (1993) Regeneration from Ajuga hairy roots with high productivity of 20-hydroxyecdysone. Plant Cell Rep 13:87–90

    Article  CAS  Google Scholar 

  • Tanaka N, Takao M, Matsumoto T (1995) Vincamine production in multiple shoot culture derived from hairy roots of Vinca minor. Plant Cell Tiss Org Cult 41:61–64

    Article  CAS  Google Scholar 

  • Tepfer D (1984) Genetic transformation of several species of higher plants by Agrobacterium rhizogenes: phenotypic consequences and sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  PubMed  CAS  Google Scholar 

  • Tepfer D, Damon JP, Ben-Hayyim G, Pellegrineschi A, Burtin D, Martin-Tanguy J (1994) Control of root system architecture through chemical and genetic alterations of polyamine metabolism. In: Davis TD, Haissig BE (eds) Biology of adventitious root formation. Plenum Press, New York, pp 181–189

    Google Scholar 

  • Yang D-C, Choi Y-E (2000) Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng. Plant Cell Rep 19:491–496

    Article  CAS  Google Scholar 

  • Yoshimatsu K, Shimomura K, Yamazaki M, Saito K, Kiuchi F (2003) Transformation of Ipecac (Cephaelis ipecacuanha) with Agrobacterium rhizogenes. Planta Med 69:1018–1023

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Programme Coordinator, Centre of Advanced Study, Department of Botany, University of Calcutta for the facilities provided, Dr. F. Abe, Fukuoka University, Japan for the standard tylophorine samples, Dr. A. Kollman, INRA, Versailles, France for his support in tylophorine analysis and Mr. N. Roy for photography. This work was funded by the Indo-French Centre for the Promotion of Advanced Research (Centre Franco-Indien pour la Promotion de la Recherche Avancée) and the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Jha.

Additional information

Communicated by P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, K.N., Ghosh, B., Tepfer, D. et al. Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation by Agrobacterium rhizogenes . Plant Cell Rep 25, 1059–1066 (2006). https://doi.org/10.1007/s00299-006-0164-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0164-z

Keywords

Navigation