Skip to main content

Advertisement

Log in

Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Microspore culture is contributing significantly in the field of plant breeding for crop improvement in general and cereals, in particular. In the present study, we investigated the uptake of fluorescently labeled cell-penetrating peptides (CPP; Tat, Tat2, M-Tat, peptide vascular endothelial-cadherin, transportan) in the freshly isolated triticale microspores (mid-late uninucleate stage). We demonstrated that Tat (RKKRRQRRR) and Tat2 (RKKRRQRRRRKKRRQRRR) are able to efficiently transduce GUS enzyme (272 kDa) in its functional form in 5 and 14% of the microspores, respectively, in a noncovalent manner. Pep-1, a synthetic CPP, was able to transduce GUS enzyme in its active form in 31% of the microspores. The effect of various endocytic and macropinocytic inhibitors on Tat2-mediated GUS enzyme delivery was studied and revealed a preferred micropinocytosis entry. DNase I protection assay and confocal laser microscopy was carried out to recommend a ratio of 4:1 Tat2-linear plasmid DNA (pActGUS) in complex preparation for microspore transfection. We further show that Tat2 can successfully deliver GUS gene in near to 2% triticale microspores. The negative control mutated Tat (M-Tat: AKKRRQRRR) failed to transducer the GUS protein and transfect the GUS gene in microspore nucleus. The ability of CPPs to deliver macromolecules (protein as well as linear plasmid DNA) noncovalently has been demonstrated in triticale isolated microspores. It further confirms potential applications of CPPs in developing simple, time saving, cost effective plant genetic engineering technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CPP:

Cell-penetrating peptide

EIPA:

5-(N-ethyl-N-isopropyl)-amiloride

FITC:

Fluoro-iso-thiocyanate

pVEC:

Peptide vascular endothelial-cadherin

RT:

Room temperature

References

  • Chang M, Chou J-C, Lee H-J (2005) Cellular internalization of fluorescent proteins via arginine-rich intracellular delivery peptide in plant cells. Plant Cell Physiol 46:482–488

    Article  PubMed  CAS  Google Scholar 

  • Chang M, Chou J-C, Chen C-P, Liu BR, Lee H-J (2007) Noncovalent protein transduction in plant cells by macropinocytosis. New Phytol 174:46–56

    Article  PubMed  CAS  Google Scholar 

  • Charzynska M, Murgia M, Cresti M (1990) Microspore of Secale cereale as a transfer cell type. Protoplasma 158:26–32

    Article  Google Scholar 

  • Chen C-P, Chou J-C, Liu BR, Chang M, Lee H-J (2007) Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS Lett 581:1891–1897

    Article  PubMed  CAS  Google Scholar 

  • Choi HS, Kim HH, Yang JM, Shin S (2006) An insight into the gene delivery mechanism of the arginine peptide system: role of the peptide/DNA complex size. Biochim Biophys Acta 1760:1604–1612

    PubMed  CAS  Google Scholar 

  • Chugh A, Eudes F (2007a) Cellular uptake of cell-penetrating peptides, pVEC and transportan in plants. J Pept Sci 14:477–481

    Article  Google Scholar 

  • Chugh A, Eudes F (2007b) Translocation and nuclear accumulation of monomer and dimer of HIV-1Tat basic domain in triticale mesophyll protoplasts. Biochim Biophys Acta 1768:419–426

    Article  PubMed  CAS  Google Scholar 

  • Chugh A, Eudes F (2008) Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos. FEBS J 275:2403–2414

    Article  PubMed  CAS  Google Scholar 

  • Elmquist A, Langel U (2003) In vitro uptake and stability study of pVEC and its all-D analog. Biol Chem 384:387–393

    Article  PubMed  CAS  Google Scholar 

  • Elmquist A, Lindgren M, Bartfai T, Langel U (2001) VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res 269:237–244

    Article  PubMed  CAS  Google Scholar 

  • Eudes F, Amundsen E (2005) Isolated microspore culture of 6X triticale cultivars. Plant Cell Tissue Organ Cult 82:233–241

    Article  CAS  Google Scholar 

  • Eudes F, Chugh A (2007) Overview on triticale doubled haploids. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Berlin

    Google Scholar 

  • Fischer R, Waizenegger K, Kohler R, Brock A (2002) A quantitative validation of fluorophore-labelled cell permeable peptide conjugates: fluorophore and cargo dependence of import. Biochim Biophys Acta 1564:365–374

    Article  PubMed  CAS  Google Scholar 

  • Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    Article  PubMed  CAS  Google Scholar 

  • Futaki S, Nakase I, Tadokoro A, Takeuchi T, Jones AT (2007) Arginine-rich peptides and their internalization mechanisms. Biochem Soc Trans 35:784–787

    Article  PubMed  CAS  Google Scholar 

  • Gerbal-Chaloin S, Gondeau C, Aldrian-Herrada G, Heitz F, Gauthier-Rouviere C, Divita G (2007) First step of the cell-penetrating peptide mechanism involves Rac1 GTPase-dependent actin-network remodelling. Biol Cell 99:223–238

    Article  PubMed  CAS  Google Scholar 

  • Henriques ST, Costa J, Castanho MA (2005) Translocation of beta-galactosidase mediated by cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Biochemistry 44:10189–10198

    Article  PubMed  Google Scholar 

  • Jarver P, Langel U (2006) Cell-penetrating peptides-A brief introduction. Biochim Biophys Acta 1758:260–263

    Article  PubMed  Google Scholar 

  • Jones AT (2007) Macropinocytosis: searching for an endocytic identity and a role in the uptake of cell penetrating peptides. J Cell Mol Med 11:670–684

    Article  PubMed  CAS  Google Scholar 

  • Kaplan IM, Wadia JS, Dowdy SF (2005) Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release 102:247–253

    Article  PubMed  CAS  Google Scholar 

  • Kosugi S, Ohashi Y, Nakajima K, Arai Y (1990) An improved assay for β-glucuronidase in transformed cells: methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Sci 70:133–140

    Article  CAS  Google Scholar 

  • Langel U (2002) Cell-penetrating peptides: processes and applications. CRC Press, Boca Raton

    Google Scholar 

  • Liu K, Lee H-J, Leong SS, Liu C-L, Chou J-C (2007) A bacterial indole-3-acetyl-l-aspartic acid hydrolase inhibits mung bean (Vigna radiata L.) seed germination through arginine-rich intracellular delivery. J Plant Growth Regul. doi:10.1007/s0034-007-9015-6

  • Mae M, Myrberg H, Jiang Y, Paves H, Valkna A, Langel U (2005) Internalisation of cell-penetrating peptides into tobacco protoplasts. Biochim Biophys Acta 1669:101–107

    Article  PubMed  Google Scholar 

  • Mano M, Teodosio C, Paiva A, Simoes S, Pedroso de Lima MC (2005) On the mechanisms of the internalization of S413-PV cell penetrating peptide. Biochem J 390:603–612

    Article  PubMed  CAS  Google Scholar 

  • Nakase I, Niwa S, Takeuchi T, Sonomura K, Kawabata N, Koike Y, Takehashi M, Tanaka S, Ueda K, Simpson JC, Jones AT, Sugiura Y, Futaki S (2004) Cellular uptake of arginine-rich peptide: roles of macropinocytosis and actin rearrangement. Mol Ther 10:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Nakase I, Tadokoro A, Kawabata N, Takeuchi T, Katoh H, Hiramoto K, Negishi M, Nomizu M, Suguira Y, Futaki S (2007) Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochem 46:492–501

    Article  CAS  Google Scholar 

  • Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E (1998) The size of DNA/transferring-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther 5:1425–1433

    Article  PubMed  CAS  Google Scholar 

  • Patel LN, Zaro JL, Shen W-C (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res. doi:10.1007/s11095-007-9303-7

  • Pooga M, Kut C, Kihlmark M, Hallbrink M, Fernaeus S, Raid R, Land T, Hällberg E, Bartfai T, Langel Ü (2001) Cellular translocation of proteins by transportan. FASEB J 15:1451–1453

    PubMed  CAS  Google Scholar 

  • Rudolph C, Planks C, Lausier J, Schillinger U, Muller RH, Rosenecker J (2003) Oligomers of the arginine-rich motif of the HIV-1TAT protein are capable of transferring plasmid DNA into cells. J Biol Chem 278(13):11411–11418

    Article  PubMed  CAS  Google Scholar 

  • Silhol M, Tyagi M, Giacca M, Lebleu B, Vives E (2002) Different mechanisms for cellular internalization of the HIV-1 Tat derived cell penetrating peptide and recombinant proteins fused to Tat. Eur J Biochem 269:494–501

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2007) Tatp mediated intracellular delivery of pharmaceutical nanocarriers. Biochem Soc Trans 35:816–820

    Article  PubMed  CAS  Google Scholar 

  • Unnamalai N, Kang BG, Lee WS (2004) Cationic oligopeptide-mediated delivery of dsRNA for post-transcriptional gene silencing in plant cells. FEBS Lett 566:307–319

    Article  PubMed  CAS  Google Scholar 

  • Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  PubMed  CAS  Google Scholar 

  • Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    Article  PubMed  CAS  Google Scholar 

  • Wender PA, Mitchell DJ, Pattabiraman ET, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97:13003–13008

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Alberta Peptide Institute (API), Canada, for custom synthesis of the peptides. We thank Dr. Fran Leggett (Lethbridge Research Centre) for confocal laser imaging and size determination of the peptide–DNA complex. Support provided by Doug Bray (University of Lethbridge) for the use of confocal microscope facility at the Canadian Centre for Behavioural Neuroscience (CCBN, University of Lethbridge) is duly acknowledged. We thank Dr Ray Wu (Cornell University, USA) for plasmid pAct-1GUS. AC acknowledges Natural Science and Engineering Research Council of Canada (NSERC) for the award of Visiting Fellowship. Authors are grateful to the Matching Investment Initiative (MII) program and Alberta Agriculture Research Institute (AARI) for providing financial support for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Eudes.

Additional information

Communicated by H. Ebinuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chugh, A., Amundsen, E. & Eudes, F. Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Rep 28, 801–810 (2009). https://doi.org/10.1007/s00299-009-0692-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0692-4

Keywords

Navigation